A biointegration of microand nanocrystalline hydroxyapatite: problems and perspectives

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Сalcium phosphate materials have been applied in clinical medicine since 1920. Among calcium phosphate materials, hydroxyapatite (HAp) is traditionally of the greatest interest, because HAp is the main inorganic component of bone tissues. However, synthetic HAр ceramics subjected to high-temperature processing, as it turned out, have a rather limited use as an osteoplastic material. Since 1990, due to advances in chemical technology, new materials of pasty nanocrystalline HAр have been developed, which are promising for the directed influence on the process of bone tissue regeneration. This review briefly summarizes the experimental and clinical data related to the application of micro- and nano-sized hydroxyapatite, and evaluated the potential of pasty nanocrystalline HAp as a material for guided bone regeneration.

Full Text

Restricted Access

About the authors

A. S Pankratov

I.M. Sechenov First Moscow State Medical University; Russian Medical Academy of Continuous Professional Education

IS. S Fadeeva

Institute of Theoretical and Experimental Biophysics RAS; Pushchino State Institute of Natural Sciences

V. V Minaychev

Institute of Theoretical and Experimental Biophysics RAS

P. O Kirsanova

Institute of Theoretical and Experimental Biophysics RAS

A. S Senotov

Institute of Theoretical and Experimental Biophysics RAS

Yu. B Yurasova

N.N. Priorov Central Institute of Traumatology and Orthopedics

V. S Akatov

Institute of Theoretical and Experimental Biophysics RAS

References

  1. Dorozhkin S.V. A detailed history of calcium orthophosphates from 1770s till 1950. Mat. Sci. Eng. 2013; 33: 3085-110.
  2. Albee F.H., Morison H.F. Studies in bone growth. Triple calcium phosphate as a stimulus to osteogenesis. Ann. Surg. 1920; 71: 32-40.
  3. Levitt S.R., Crayton P.H., Monroe E.A. et al. Forming methods for apatite prosthesis. J. Biomed. Mater. Res. 1969; 3: 683-4.
  4. Köster K., Karbe E., Kramer H. et al. Experimental bone replacement with resorbable calcium phosphate ceramic. Langenbecks Arch. Chir. 1976; 341: 77-86.
  5. Eliaz N., Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials (Basel) 2017; 10(4): E334.
  6. Habraken W., Habibovic P., Epple M. et al. Calcium phosphates in biomedical applications: materials for the future? MaterialsToday 2016; 19(2): 69-87.
  7. Bhaskar S.N., Brady J.M., Getter L. et al. Biodegradable ceramic implants in bone. Electron and light microscopic analysis. Oral Surg. Oral Med. Oral Pathol. 1971; 32: 336-46.
  8. Drisbell T., Hassler C., Tennery V. et al. Calcium phosphate resorbable ceramics: a potential alternative to bone grafting. J. Dent. Res. 1973; 52: 123-7.
  9. Denissen H.W., de Groot K. Immediate dental root implants from synthetic dense calciumhydroxylapatite. J. Prosthet. Dent. 1979; 42: 551-6.
  10. Dorozhkin S.V. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 2011; 1(2): 121-64.
  11. Вересов А.Г., Путляев В.И., Третьяков Ю.Д. Химия неорганических биоматериалов на основе фосфатов кальция. Российский Химический Журнал (Ж. Рос. хим. об-ва им. Д.И. Менделеева), 2004; XLVIII(4): 52-64.
  12. Сафронова Т.В., Путляев В.И. Медицинское неорганическое материаловедение в России: кальцийфосфатные материалы. Наносистемы: физика, химия, математика 2013; 4(1): 24-47.
  13. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Relat. Res. 1981; 157: 259-78.
  14. Oonishi H., Yamamoto M., Ishimaru H. et al. The effect of hydroxyapatite coating on bone growth into porous titanium alloy implants. J. Bone Surg. Br. 1989; 71(2): 213-6.
  15. Golec T.S., Krauser J.T. Long-term retrospective studies on hydroxyapatite-coated endosteal and subperiosteal implants. Dent. Clin. North Am. 1992; 36: 39-65.
  16. Davies J.E. Bone bonding at natural and biomaterial surfaces. Bio-materials 2007; 28: 5058-67.
  17. Hench L.L., Splinter R.J., Allen W.C. et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mat. Res. 1971; 5(6): 117-41.
  18. Klein C.P., Driessen A.A., de Groot K. et al. Biodegradation behavior of various calcium phosphate materials in bone tissue. Biomed. Mater. Res. 1983; 17(5): 769-84.
  19. Klein C.P., Driessen A.A., de Groot K. Relationship between the degradation behaviour of calcium phosphate ceramics and their physical-chemical characteristics and ultrastructural geometry. Biomaterials 1984; 5(3): 157-60.
  20. Klein C.P., Abe Y., Hosono H. et al. Comparison of calcium phosphate glass ceramics with apatite ceramics implanted in bone. An interface study-II. Biomaterials 1987; 8(3): 234-6.
  21. Klein C.P., van der Lubbe H.B., de Groot K. A plastic composite of alginate with calcium phosphate granulate as implant material: an in vivo study. Biomaterials 1987; 8(4): 308-10.
  22. Klein C.P., Patka P., den Hollander W. Macroporous calcium phosphate bioceramics in dog femora: a histological study of interface and biodegradation. Biomaterials 1989; 10(1): 59-62.
  23. Wagner W., Wahlmann U.W., Jänicke S. Morphometrical comparison of bone reaction to tricalcium phosphate, hydroxyapatite and Ceravital. Dtsch. Zahnarztl. Z. 1988; 43(1): 108-12.
  24. Nuss K.M.R., von Rechenberg B. Biocompatibility Issues with Modern Implants in Bone - A Review for Clinical Orthopedics. Open Orthop. J. 2008; 2: 66-78.
  25. Thomas K., Kay J., Cook S. et al. The effect of surface macrotexture and hydroxyapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J. Biomed. Mater. Res. 1987; 21: 1395-414.
  26. Ylinen P., Suuronen R., Taurio R. et al. Use of hydroxylapatite/ polymer-composite in facial bone augmentation. An experimental study. Int. J. Oral Maxillofac. Surg. 2002; 31(4): 405-9.
  27. Hong L., Hengchang X., de Groot K. Tensile strength of the interface between hydroxyapatite and bone. J. Biomed. Mater. Res. 1992; 26(1): 7-18.
  28. Denissen H.W., Kalk W. Preventive implantations. Int. Dent. J. 1991; 41(1): 17-24.
  29. Leon B., Jansen J.A., editors. Thin Calcium Phosphate Coatings for Medical Implants. New York: Springer; 2009.
  30. Панкратов А.С., Лекишвили М.В., Копецкий И.С. Костная пластика в стоматологии и челюстно-лицевой хирургии. Остеопластические материалы: Руководство для врачей. М.: БИНОМ; 2011.
  31. Ducheyne P., Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 1999; 20(23-24): 2287-303.
  32. Григорьян А.С., Емцев А.Я., Лизунков В.И. и др. Судьба гранулята керамики гидроксиапатита при его имплантации во вторичный костный дефект нижней челюсти. Стоматология 1996; 5: 51-2.
  33. Jitaru S., Hodisan I., Timis L. et al. The use of bioceramics in endodontics - literature review. Clujul Med. 2016; 89(4): 470-3.
  34. Linhart W., Briem D., Amling M. et al. Mechanical failure of porous hydroxyapatite ceramics 7.5 years after implantation in the proximal tibial. Unfallchirurg 2004; 107(2): 154-7.
  35. Ахмедов Ш.М., Мусина Л.А., Кочарян Е.З. и др. Экспериментально-морфологическое исследование костнопластических материалов, предназначенных для хирургического лечения ЛОР-патологий. Гены & Клетки 2015; X(1): 41-7.
  36. Ripamonti U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral. J. Bone Joint. Surg. Am. 1991; 73(5): 692-703.
  37. Ripamonti U., Crooks J., Kirkbride A.N. Sintered porous hydroxyapatite with intrinsic osteoinductive activity: geometric induction of bone formation. S. Afr. J. Sci. 1999; 95(8): 335-43.
  38. Yamasaki H., Sakai H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials 1992; 13(5): 308-12.
  39. Magan A., Ripamonti U. Geometry of porous hydroxyapatite implants influences osteogenesis in baboons (Papio ursinus). J. Craniofac. Surg. 1996; 7(1): 71-8.
  40. Davison N.L., Luo X., Schoenmaker T. et al. Submicron-scale surface architecture of tricalcium phosphate directs osteogenesis in vitro and in vivo. Eur. Cell Mater. 2014; 27: 281-97.
  41. Habibovic P., Yuan H., van den Doel M. et al. Relevance of osteoinductive biomaterials in critical-sized orthotopic defect. J. Orthop. Res. 2006; 24(5): 867-76.
  42. Habibovic P., Kruyt M.C., Juhl M.V. et al. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J. Orthop. Res. 2008; 26(10): 1363-70.
  43. Сергеева Н.С., Комлев В.С., Свиридова И.К. и др. Некоторые физико-химические и биологические характеристики трехмерных конструкций на основе альгината натрия и фосфатов кальция, полученных методом 3D-печати и предназначенных для реконструкции костных дефектов. Гены & Клетки 2015; X(2): 39-45.
  44. Yuan H., Kurashina K., de Bruijn J.D. et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 1999; 20(19): 1799-806.
  45. Yuan H., Yang Z., De Bruij J.D. et al. Material-dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dog. Biomaterials 2001; 22(19): 2617-23.
  46. Orly I., Grégoire M., Menanteau J. et al. Effects of synthetic calcium phosphates on the 3H-thymidine incorporation and alkaline phosphatase activity of human fibroblasts in culture. J. Biomed. Mater. Res. 1989; 23(12): 1433-40.
  47. Grégoire M., Orly I., Menanteau J. The influence of calcium phosphate biomaterials on human bone cell activities. An in vitro approach. J. Biomed. Mater. Res. 1990; 24(2): 165-77.
  48. Alliot-Licht B., Gregoire M., Orly I. et al. Cellular activity of osteoblasts in the presence of hydroxyapatite: an in vitro experiment. Biomaterials 1991; 12(8): 752-6.
  49. Sun J.S., Liu H.C., Chang W.H. et al. Influence of hydroxyapatite particle size on bone cell activities: an in vitro study. J. Biomed. Mater. Res. 1998; 39(3): 390-7.
  50. Guo X., Gough J.E., Xiao P. et al. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J. Biomed. Mater. Res. A 2007; 82(4): 1022-32.
  51. Laquerriere P., Grandjean-Laquerriere A., Addadi-Rebbah S. et al. MMP-2, mMp-9 and their inhibitors TIMP-2 and TIMP-1 production by human monocytes in vitro in the presence of different forms of hydroxyapatite particles. Biomaterials 2004; 25(13): 2515-24.
  52. Lebre F., Sridharan R., Sawkins M.J. et al. The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation. Sci. Rep. 2017; 7(1): 2922.
  53. Cai Y., Liu Y., Yan W. et al. Role of hydroxyapatite nanoparticle size in bone cell proliferation. Journal of Materials Chemistry 2007; 17(36): 3780.
  54. Shi Z., Huang X., Cai Y. et al. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater. 2009; 5(1): 338-45.
  55. Ehrenfest D.M.D., Coelho P.G., Kang B.S. et al. Classification of osseointegrated implant surfaces: Materials, chemistry and topography. Trends Biotechnol. 2010; 28: 198-206.
  56. Balasundaram G., Webster T.J. Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine (Lond) 2006; 1(2): 169-76.
  57. Bral A., Mommaerts M.Y. In vivo biofunctionalization of titanium patient-specific implants with nano hydroxyapatite and other nano calcium phosphate coatings: A systematic review. J. Cranio-Maxillofac. Surg. 2016; 44: 400-12.
  58. Webster T., Eijofor J.U. Increased osteoblast adhesion on nano-phase metals: Ti, Ti6Al4V and CoCrMo. Biomaterials 2004; 25: 4731-9.
  59. Catledge S.A., Fries M.D., Vohra Y.K. et al. Nanostructured ceramics for biomedical implants. J. Nanosci. Nanotechnol. 2002; 2: 293-312.
  60. Webster T.J., Siegel R.W., Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000; 21: 1803-10.
  61. Зуев В.П., Сергеев П.В., Панкратов A.C. О влиянии гидроксиапатита на пролиферативную активность клеток костной ткани. Химико-Фармацевтический журнал 1994; 2: 10-4.
  62. Huber F.X., Berger I., McArthur N. et al. Evaluation of a novel nano-crystalline hydroxyapatite paste and a solid hydroxyapatite ceramic for the treatment of critical size bone defects (CSD) in rabbits. J. Mater. Sci. Mater. Med. 2008; 19(1): 33-8.
  63. Laschke M.W., Witt K., Pohlemann T. et al. Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization. J. Biomed. Mater. Res. B Appl. Biomater. 2007; 82(2): 494-505.
  64. Spies C., Schnürer S., Gotterbarm T. et al. Animal study of the bone substitute material Ostim within osseous defects in Göttinger minipigs. Z. Orthop. Unfall. 2008; 146(1): 64-9.
  65. Zuev V.P., Dmitrieva L.A., Pankratov A.S. et al. The comparative characteristics of stimulators of reparative osteogenesis in the treatment of periodontal diseases. Stomatologiia (Mosk) 1996; 75(5): 31-4.
  66. Панкратов А.С., Древаль А.А., Пылаев А.С. и др. Использование остеопластических материалов при лечении нагноившейся костной раны нижней челюсти в эксперименте. Российский стоматологический журнал 2000; 5: 4-6.
  67. Григорьянц Л.А., Бадалян В.А., Белова Е.Ю. Профилактика и лечение осложнений, связанных с удалением третьего моляра при его ретенции. Стоматология 1997; 3: 41-3.
  68. Безруков В.М., Григорьянц Л.А., Зуев В.П. и др. Оперативное лечение кист с использованием гидроксиапатита ультравысокой дисперсности. Стоматология 1998; 77(1): 31-5.
  69. Золоева З.Э. Лечение пациентов с заболеваниями пародонта, сопровождающихся резорбцией костной ткани в области фуркаций корней зубов [диссертация]. Москва: МГМСУ; 1998.
  70. Григорьянц Л.А., Панкратов А.С., Копецкий И.С. и др. Опыт применения новой лекарственной композиции гидроксиапатита ультравысокой дисперсности с метронидазолом в хирургической стоматологии. Клиническая стоматология 2000; 4: 44-7.
  71. Бадалян В.А. Хирургическое лечение периапикальных деструктивных изменений с использованием остеопластических материалов на основе гидроксиапатита [диссертация]. Москва: ЦНИИС; 2000.
  72. Gerlach K.L., Niehues D. Treatment of jaw cysts with a new kind of nanoparticular hydroxylapatite. Mund. Kiefer. Gesichtschir. 2007; 11(3): 131-7.
  73. Панкратов А.С. Совершенствование методов оперативного лечения больных с переломами нижней челюсти и их осложнениями [диссертация]. Москва: МгМСУ; 2005.
  74. Chris Arts J.J., Verdonschot N., Schreurs B.W. et al. The use of a bioresorbable nanocrystalline hydroxyapatite paste in acetabular bone impaction grafting. Biomaterials 2006; 27(7): 1110-8.
  75. Huber F.X., Hillmeier J., Herzog L. et al. Open reduction and palmar plate-osteosynthesis in combination with a nanocrystalline hydroxyapatite spacer in the treatment of comminuted fractures of the distal radius. J. Hand Surg. Br. 2006; 31(3): 298-303.
  76. Huber F.X., McArthur N., Hillmeier J. et al. Void filling of tibia compression fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a hydroxyapatite ceramic core: first clinical results. Arch. Orthop. Trauma Surg. 2006; 126(8): 533-40.
  77. Huber F.X., Hillmeier J., McArthur N. et al. The use of nanocrystalline hydroxyapatite for the reconstruction of calcaneal fractures: Preliminary results. J. Foot Ankle Surg. 2006; 45(5): 322-8.
  78. Huber F.X., McArthur N., Heimann L. et al. Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim in comparison to Alpha-BSM - more bone ingrowth inside the implanted material with Ostim compared to Alpha BSM. BMC Musculoskelet. Disord. 2009; 10: 164.
  79. Gerber T., Holzhuter G., Gotz W. et al. Nanostructuring of biomaterials - a pathway to bone grafting substitute. Eur. J. Trauma 2006; 2: 132-40.
  80. Gotz W., Gerber T., Michel B. et al. Immunhistochemical characterization of nanocristalline hydroxylapatite silica gel (Nanobone1) osteogenesis: A study on biopsies from human jaws. Clin. Oral Res. 2008; 19: 1016-26.
  81. Gerike W., Bienengräber V., Henkel K.O. et al. The manufacture of synthetic non-sintered and degradable bone grafting substitutes. Folia Morphol. (Warsz) 2006; 65(1): 54-5.
  82. Xu W., Holzhüter G., Sorg H. et al. Early matrix change of a nano-structured bone grafting substitute in the rat. J. Biomed. Mater. Res. B Appl. Biomater. 2009; 91(2): 692-9.
  83. Henkel K.O., Gerber T., Dörfling P. et al. Repair of bone defects by applying biomatrices with and without autologous osteoblasts. J. Craniomaxillofac. Surg. 2005; 33(1): 45-9.
  84. Henkel K.O., Bierengraber V., Lenz S. et al. Comparison of a New Kind of Calcium Phosphate Formula Versus Conventional Calciumphosphate Matrices in Treating Bone Defects - A Long-Term Investigation in Pigs. Key Engineering Materials 2005; 284-286: 885-8.
  85. Henkel K.O., Gerber T., Lenz S. et al. Macroscopical, histological, and morphometric studies of porous bone-replacement materials in minipigs 8 months after implantation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006; 102(5): 606-13.
  86. Maas W., Bienengraber V., Wolf E. Safe augmentation: Split-mouth case study on the augmentation of medium-sized bone defects. Implants 2006; 3: 10-5.
  87. Chuchracky N. NanoBone Augmentation Material and Bego Semados - S-Implants: A Powerful Combination for Today’s Dental Implantology Applications? Implants 2006; 1: 6-8.
  88. Canullo L., Dellavia C. Sinus lift using a nanocrystalline hydroxyapatite silica gel in severely resorbed maxillae: histological preliminary study. Clin. Implant. Dent. Relat. Res. 2009; 11(S.1): e7-13.
  89. Heinemann F., Mundt T., Biffar R. et al. A 3-year clinical and radiographic study of implants placed simultaneously with maxillary sinus floor augmentations using a new nanocrystalline hydroxyapatite. J. Physiol. Pharmacol. 2009; 60(8): 91-7.
  90. Canullo L., Dellavia C., Heinemann F. Maxillary sinus floor augmentation using a nano-crystalline hydroxyapatite silica gel: case series and 3-month preliminary histological results. Ann. Anat. 2012; 194(2): 174-8.
  91. Tabakovic A., Kester M., Adair J.H. Calcium phosphate-based composite nanoparticles in bioimaging and therapeutic delivery applications. WIREs Nanomed. Nanobiotechnol. 2012; 4: 96-112.
  92. Adair J.H., Parette M.P., Altinoglu E.i. et al. Nanoparticulate alternatives for drug delivery. ACS Nano 2010; 4: 4967-70.
  93. Zhu S.H., Huang B.Y., Zhou K.C. et al. Hydroxyapatite nanoparticles as a novel gene carrier. J. Nanopart. Res. 2004; 6: 307-11.
  94. Basu B., Dhirendra K., Ashok K. Advanced Biomaterials: Fundamentals, Processing, and Applications. Hoboken: Wiley; 2009.
  95. Bernhardt A., Dittrich R., Lode A. et al. Nanocrystalline spherical hydroxyapatite granules for bone repair: In vitro evaluation with osteoblast-like cells and osteoclasts. J. Mater. Sci. Mater. Med. 2013; 24: 1755-66.
  96. Ong H.T., Loo J.S.C., Boey F.Y.C. et al. Exploiting the high-affinity phosphonate-hydroxyapatite nanoparticle interaction for delivery of radiation and drugs. J. Nanopart. Res. 2008; 10: 141-50.
  97. Kilian O., Alt V., Heiss C. et al. New blood vessel formation and expression of VEGF receptors after implantation of platelet growth factor-enriched biodegradable nanocrystalline hydroxyapatite. Growth Factors 2005; 23(2): 125-33.
  98. Bohner M., Doebelin N., Baroud G. Theoretical and experimental approach to test the cohesion of calcium phosphate pastes. Eur. Cell. Mater. J. 2006; 12: 26-35.
  99. Bohner M. Design of ceramic-based cements and putties for bone graft substitution. Eur. Cell. Mater. J. 2010; 20: 1-12.
  100. De Carvalho F.G., Vieira B.R., Santos R.L. et al. In vitro effects of nano-hydroxyapatite paste on initial enamel carious lesions. Pediatr. Dent. 2014; 36(3): 85-9.
  101. Hruschka V., Tangl S., Ryabenkova Y. et al. Comparison of nanoparticular hydroxyapatite pastes of different particle content and size in a novel scapula defect model. Sci. Rep. 2017; 7: 43425.
  102. Müller K.H., Motskin M., Philpott A.J. et al. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages. Biomaterials 2014; 35(3): 1074-88.
  103. Sun J., Ding T. Differences in DNA damage pathways induced by two ceramic nanoparticles. IEEE Trans. Nanobioscience 2009; 8(1): 78-82.
  104. Minaychev V.V., Teleshev A.T., Gorshenev V.N. et al. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite. IOP Conf. Series: Materials Science and Engineering 2018; 347: 012045.
  105. Минайчев В.В. Исследование остеогенных свойств материалов на основе пастообразного нанокристаллического гидроксиапатита [диссертация]. Пущино [МО]: ПущГЕНИ; 2018

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies