Therapeutic strategies for targeting cancer stem cells

Cover Page

Cite item


Cancer stem cells (CSCs) are gaining extensive acknowledge as crucial therapeutic targets for treatment of malignant tumors. CSCs are able to maintain their population and to constantly generate newly differentiated tumor cells. Cancer stem cells that escape treatment are often considered the main source of tumor relapse. Resulting clinical significance had led to extensive studies of stem phenotype-contributing signaling pathways that are often abnormally active in cancer stem cells and CSC-specific traits, that could be used as selective therapeutic targets. Many CSC-targeting therapeutic strategies are currently undergoing clinical trials and evaluation, including various stem cell-specific signaling pathway inhibitors, cancer vaccines based on CSC-primed dendritic cells, monoclonal antibodies and chimeric antigen receptors for adoptive cell immunotherapy.

Full Text

Restricted Access

About the authors

N. S Alkon

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the RAS

A. E Ivanova

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the RAS

E. I Frolova

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the RAS

S. P Chumakov

M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the RAS; V.A. Engelhardt Insitute of Molecular Biology of the RAS


  1. Виноградова Т.В., Чернов И.П., Монастырская Г.С. и др. Раковые стволовые клетки: пластичность против терапии. Acta Naturae 2015; 7: 53-63.
  2. Vinogradov S., Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond.) 2012; 7(4): 597-615.
  3. Takebe N., Harris P.J., Warren R.Q. et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 2011; 8(2): 97-106.
  4. Takebe N., Miele L., Harris P.J. et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol. 2015; 12(8): 445-64.
  5. Liu J., Sato C., Cerletti M. et al. Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr. Top. Dev. Biol. 2010; 92: 367-409.
  6. Ross D.A., Rao P.K., Kadesch T. Dual roles for the Notch target gene Hes-1 in the differentiation of 3T3-L1 preadipocytes. Mol. Cell. Biol. 2004; 24(8): 3505-13.
  7. Weng A.P., Millholland J.M., Yashiro-Ohtani Y. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006; 20(15): 2096-109.
  8. Ichida J.K., Tcw J., Williams L.A. et al. Notch inhibition allows oncogene-independent generation of iPS cells. Nat. Chem. Biol. 2014; 10(8): 632-9.
  9. Zhang C.C., Yan Z., Zong Q. et al. Synergistic effect of the gamma-secretase inhibitor PF-03084014 and docetaxel in breast cancer models. Stem Cells Transl. Med. 2013; 2(3): 233-42.
  10. Andersson E.R., Lendahl U. Therapeutic modulation of Notch signalling--are we there yet? Nat. Rev. Drug Discov. 2014; 13(5): 357-78.
  11. Kummar S., O'Sullivan Coyne G., Do K.T. et al. Clinical Activity of the gamma-Secretase Inhibitor PF-03084014 in Adults With Desmoid Tumors (Aggressive Fibromatosis). J. Clin. Oncol. 2017; 35(14): 1561-9.
  12. Schott A.F., Landis M.D., Dontu G. et al. Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin. Cancer Res. 2013; 19(6): 1512-24.
  13. Tolcher A.W., Messersmith W.A., Mikulski S.M. et al. Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J. Clin. Oncol. 2012; 30(19): 2348-53.
  14. Kwiatkowska-Borowczyk E.P., Gabka-Buszek A., Jankowski J. et al. Immunotargeting of cancer stem cells. Contemp. Oncol. (Pozn.) 2015; 19(1A): A52-9.
  15. Naujokat C. Monoclonal antibodies against human cancer stem cells. Immunotherapy 2014; 6(3): 290-308.
  16. Chiorean E.G., LoRusso P., Strother R.M. et al. A Phase I First-inHuman Study of Enoticumab (REGN421), a Fully Human Delta-like Ligand 4 (Dll4) Monoclonal Antibody in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2015; 21(12): 2695-703.
  17. Clarke J.M., Hurwitz H.I. Understanding and targeting resistance to anti-angiogenic therapies. J. Gastrointest. Oncol. 2013; 4(3): 253-63.
  18. Jenkins D.W., Ross S., Veldman-Jones M. et al. MEDI0639: a novel therapeutic antibody targeting Dll4 modulates endothelial cell function and angiogenesis in vivo. Mol. Cancer Ther. 2012; 11(8): 1650-60.
  19. Marcucci F., Rumio C., Lefoulon F. Anti-Cancer Stem-like Cell Compounds in Clinical Development - An Overview and Critical Appraisal. Front. Oncol. 2016; 6: 115.
  20. McKeage M.J., Kotasek D., Markman B. et al. Phase IB Trial of the Anti-Cancer Stem Cell DLL4-Binding Agent Demcizumab with Pemetrexed and Carboplatin as First-Line Treatment of Metastatic Non-Squamous NSCLC. Target. Oncol. 2018; 13(1): 89-98.
  21. Teodorczyk M., Schmidt M.H. Notching on Cancer's Door: Notch Signaling in Brain Tumors. Front. Oncol. 2014; 4: 341.
  22. Cancilla B., Cain J., Wang M. et al. Abstract 3728: Anti-Notch1 antibody (OMP-52M51) impedes tumor growth and cancer stem cell frequency (CSC) in a chemo-refractory breast cancer xenograft model with an activating Notch1 mutation and screening for activated Notch1 across multiple solid tumor types. Cancer Res. 2013; 73 Suppl 8: 3728.
  23. Adorno-Cruz V., Kibria G., Liu X. et al. Cancer stem cells: targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Res. 2015; 75(6): 924-9.
  24. Ferrarotto R., Eckhardt G., Patnaik A. et al. A Phase 1 dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Ann. Oncol. In press 2018.
  25. Yen W.C., Fischer M.M., Axelrod F. et al. Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin. Cancer Res. 2015; 21(9): 2084-95.
  26. Campbell V., Copland M. Hedgehog signaling in cancer stem cells: a focus on hematological cancers. Stem Cells Cloning 2015; 8: 27-38.
  27. Ruiz i Altaba A., Mas C., Stecca B. The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol. 2007; 17(9): 438-47.
  28. Wang M.L., Chiou S.H., Wu C.W. Targeting cancer stem cells: emerging role of Nanog transcription factor. Onco. Targets Ther. 2013; 6: 1207-20.
  29. Wang Y., Zhe H., Ding Z. et al. Cancer stem cell marker Bmi-1 expression is associated with basal-like phenotype and poor survival in breast cancer. World J. Surg. 2012; 36(5): 1189-94.
  30. Wang X., Venugopal C., Manoranjan B. et al. Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene 2012; 31(2): 187-99.
  31. Jiang L., Li J., Song L. Bmi-1, stem cells and cancer. Acta. Biochim. Biophys. Sin. (Shanghai) 2009; 41(7): 527-34.
  32. Borah A., Raveendran S., Rochani A. et al. Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogenesis 2015; 4: e177.
  33. LoRusso P.M., Rudin C.M., Reddy J.C. et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin. Cancer Res. 2011; 17(8): 2502-11.
  34. Singh B.N., Fu J., Srivastava R.K. et al. Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics: molecular mechanisms. PLoS One 2011; 6(11): e27306.
  35. Nusse R. Wnt signaling and stem cell control. Cell Res. 2008; 18(5): 523-7.
  36. Takahashi N., Maeda K., Ishihara A. et al. Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front. Biosci. (Landmark Ed.) 2011; 16: 21-30.
  37. Sugimura R., Li L. Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Res. C: Embryo Today 2010; 90(4): 243-56.
  38. Ravindran G., Sawant S.S., Hague A. et al. Association of differential beta-catenin expression with Oct-4 and Nanog in oral squamous cell carcinoma and their correlation with clinicopathological factors and prognosis. Head Neck 2015; 37(7): 982-93.
  39. Yong X., Tang B., Xiao Y.F. et al. Helicobacter pylori upregulates Nanog and Oct4 via Wnt/beta-catenin signaling pathway to promote cancer stem cell-like properties in human gastric cancer. Cancer Lett. 2016; 374(2): 292-303.
  40. Chai S., Ng K.Y., Tong M. et al. Octamer 4/microRNA-1246 signaling axis drives Wnt/beta-catenin activation in liver cancer stem cells. Hepatology 2016; 64(6): 2062-76.
  41. Fan Z., Li M., Chen X. et al. Prognostic Value of Cancer Stem Cell Markers in Head and Neck Squamous Cell Carcinoma: a Meta-analysis. Sci. Rep. 2017; 7: 43008.
  42. Boumahdi S., Driessens G., Lapouge G. et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 2014; 511(7508): 246-50.
  43. Yi X.J., Zhao Y.H., Qiao L.X. et al. Aberrant Wnt/beta-catenin signaling and elevated expression of stem cell proteins are associated with osteosarcoma side population cells of high tumorigenicity. Mol. Med. Rep. 2015; 12(4): 5042-8.
  44. Yang N., Hui L., Wang Y. et al. Overexpression of SOX2 promotes migration, invasion, and epithelial-mesenchymal transition through the Wnt/ beta-catenin pathway in laryngeal cancer Hep-2 cells. Tumour Biol. 2014; 35(8): 7965-73.
  45. Kuroda T., Tada M., Kubota H. et al. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol. Cell. Biol. 2005; 25(6): 2475-85.
  46. Chiou S.H., Wang M.L., Chou Y.T. et al. Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 2010; 70(24): 10433-44.
  47. Dai H., Wang Y., Lu X. et al. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. J. Natl. Cancer Inst. 2016; 108(7).
  48. Yun J.H., Park Y.G., Lee K.M. et al. Curcumin induces apoptotic cell death via Oct4 inhibition and GSK-3beta activation in NCCIT cells. Mol. Nutr. Food Res. 2015; 59(6): 1053-62.
  49. Valkenburg K.C., Graveel C.R., Zylstra-Diegel C.R. et al. Wnt/betacatenin Signaling in Normal and Cancer Stem Cells. Cancers (Basel) 2011; 3(2): 2050-79.
  50. Le P.N., McDermott J.D., Jimeno A. Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28. Pharmacol. Ther. 2015; 146: 1-11.
  51. Kim Y.M., Kahn M. The role of the Wnt signaling pathway in cancer stem cells: prospects for drug development. Res. Rep. Biochem. 2014; 4: 1-12.
  52. Masuda M., Sawa M., Yamada T. Therapeutic targets in the Wnt signaling pathway: Feasibility of targeting TNIK in colorectal cancer. Pharmacol. Ther. 2015; 156: 1-9.
  53. Xia P., Xu X.Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am. J. Cancer. Res. 2015; 5(5): 1602-9.
  54. Chandarlapaty S., Sawai A., Scaltriti M. et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 2011; 19(1): 58-71.
  55. Song M.S., Salmena L., Pandolfi P.P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 2012; 13(5): 283-96.
  56. Hahn-Windgassen A., Nogueira V., Chen C.C. et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 2005; 280(37): 32081-9.
  57. Chang L., Graham P.H., Hao J. et al. Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis. 2013; 4: e875.
  58. Francipane M.G., Lagasse E. Therapeutic potential of mTOR inhibitors for targeting cancer stem cells. Br. J. Clin. Pharmacol. 2016; 82(5): 1180-8.
  59. Mendiburu-Elicabe M., Gil-Ranedo J., Izquierdo M. Efficacy of rapamycin against glioblastoma cancer stem cells. Clin. Transl. Oncol. 2014; 16(5): 495-502.
  60. Liu Y., Zhang X., Liu J. et al. Everolimus in combination with letrozole inhibit human breast cancer MCF-7/Aro stem cells via PI3K/mTOR pathway: an experimental study. Tumour Biol. 2014; 35(2): 1275-86.
  61. Oza A.M., Pignata S., Poveda A. et al. Randomized Phase II Trial of Ridaforolimus in Advanced Endometrial Carcinoma. J. Clin. Oncol. 2015; 33(31): 3576-82.
  62. Lee J.J., Loh K., Yap Y.S. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol. Med. 2015; 12(4): 342-54.
  63. Huang Z., Wu Y., Zhou X. et al. Clinical efficacy of mTOR inhibitors in solid tumors: a systematic review. Future Oncol. 2015; 11(11): 1687-99.
  64. Musa F., Alard A., David-West G. et al. Dual mTORC1/2 Inhibition as a Novel Strategy for the Resensitization and Treatment of Platinum-Resistant Ovarian Cancer. Mol. Cancer Ther. 2016; 15(7): 1557-67.
  65. Vazquez-Santillan K., Melendez-Zajgla J., Jimenez-Hernandez L. et al. NF-kappaB signaling in cancer stem cells: a promising therapeutic target? Cell Oncol. (Dordr.) 2015; 38(5): 327-39.
  66. Oeckinghaus A., Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 2009; 1(4): a000034.
  67. Oeckinghaus A., Hayden M.S., Ghosh S. Crosstalk in NF-kappaB signaling pathways. Nat. Immunol. 2011; 12(8): 695-708.
  68. Sun S.C. Non-canonical NF-kappaB signaling pathway. Cell Res. 2011; 21(1): 71-85.
  69. Rinkenbaugh A.L., Baldwin A.S. The NF-kappaB Pathway and Cancer Stem Cells. Cells 2016; 5(2).
  70. Paranjape A.N., Balaji S.A., Mandal T. et al. Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer 2014; 14: 785.
  71. Duru N., Candas D., Jiang G. et al. Breast cancer adaptive resistance: HER2 and cancer stem cell repopulation in a heterogeneous tumor society. J. Cancer Res. Clin. Oncol. 2014; 140(1): 1-14.
  72. Liu M., Sakamaki T., Casimiro M.C. et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 2010; 70(24): 10464-73.
  73. Zhang W., Grivennikov S.I. Top Notch cancer stem cells by paracrine NF-kappaB signaling in breast cancer. Breast Cancer Res. 2013; 15(5): 316.
  74. Hirsch H.A., Iliopoulos D., Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. PNAS USA 2013; 110(3): 972-7.
  75. Lei Y., Yi Y., Liu Y. et al. Metformin targets multiple signaling pathways in cancer. Chin. J. Cancer 2017; 36(1): 17.
  76. Yip N.C., Fombon I.S., Liu P. et al. Disulfiram modulated ROS-MAPK and NFkappaB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br. J. Cancer 2011; 104(10): 1564-74.
  77. Liu P., Brown S., Goktug T. et al. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells. Br. J. Cancer 2012; 107(9): 1488-97.
  78. Storz P. Targeting the alternative NF-kappaB pathway in pancreatic cancer: a new direction for therapy? Expert Rev. Anticancer Ther. 2013; 13(5): 501-4.
  79. Hoesel B., Schmid J.A. The complexity of NF-kappaB signaling in inflammation and cancer. Mol. Cancer 2013; 12: 86.
  80. Walsby E., Pearce L., Burnett A.K. et al. The Hsp90 inhibitor NVP-AUY922-AG inhibits NF-kappaB signaling, overcomes microenvironmental cytoprotection and is highly synergistic with fludarabine in primary CLL cells. Oncotarget 2012; 3(5): 525-34.
  81. Qing G., Yan P., Qu Z. et al. Hsp90 regulates processing of NF-kappa B2 p100 involving protection of NF-kappa В-inducing kinase (NIK) from autophagy -mediated degradation. Cell Res. 2007; 17(6): 520-30.
  82. Ormhoj M., Bedoya F., Frigault M.J. et al. CARs in the Lead Against Multiple Myeloma. Curr. Hematol. Malig. Rep. 2017; 12(2): 119-25.
  83. Bernt K.M., Armstrong S.A. Leukemia stem cells and human acute lymphoblastic leukemia. Semin. Hematol. 2009; 46(1): 33-8.
  84. le Viseur C., Hotfilder M., Bomken S. et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 2008; 14(1): 47-58.
  85. Woyach J.A., Awan F., Flinn I.W. et al. A phase 1 trial of the Fc-engineered CD19 antibody XmAb5574 (MOR00208) demonstrates safety and preliminary efficacy in relapsed CLL. Blood 2014; 124(24): 3553-60.
  86. Naddafi F., Davami F. Anti-CD19 Monoclonal Antibodies: a New Approach to Lymphoma Therapy. Int. J. Mol. Cell. Med. 2015; 4(3): 143-51.
  87. Curran K.J., Pegram H.J., Brentjens R.J. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J. Gene Med. 2012; 14(6): 405-15.
  88. Maude S.L., Teachey D.T., Porter D.L. et al. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 2015; 125(26): 4017-23.
  89. Kapoor P., Greipp P.T., Morice W.G. et al. Anti-CD20 monoclonal antibody therapy in multiple myeloma. Br. J. Haematol. 2008; 141(2): 135-48.
  90. Schmidt P., Kopecky C., Hombach A. et al. Eradication of melanomas by targeted elimination of a minor subset of tumor cells. PNAS USA 2011; 108(6): 2474-9.
  91. McClellan J.S., Majeti R. The cancer stem cell model: В cell acute lymphoblastic leukaemia breaks the mould. EMBO Mol. Med. 2013; 5(1): 7-9.
  92. Kuijpers T.W., Bende R.J., Baars P.A. et al. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J. Clin. Invest. 2010; 120(1): 214-22.
  93. Cragg M.S., Walshe C.A., Ivanov A.O. et al. The biology of CD20 and its potential as a target for mAb therapy. Curr. Dir. Autoimmun. 2005; 8: 140-74.
  94. Paino T., Ocio E.M., Paiva В. et al. CD20 positive cells are undetectable in the majority of multiple myeloma cell lines and are not associated with a cancer stem cell phenotype. Haematologica 2012; 97(7): 1110-4.
  95. Foran J.M., Rohatiner A.Z., Cunningham D. et al. European phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle-cell lymphoma and previously treated mantle-cell lymphoma, immunocytoma, and small В-cell lymphocytic lymphoma. J. Clin. Oncol. 2000; 18(2): 317-24.
  96. Lim S.H., Beers S.A., French R.R. et al. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 2010; 95(1): 135-43.
  97. Walter R.B., Appelbaum F.R., Estey E.H. et al. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 2012; 119(26): 6198-208.
  98. Clayton S., Mousa S.A. Therapeutics formulated to target cancer stem cells: Is it in our future? Cancer Cell Int. 2011; 11: 7.
  99. Ehninger A., Kramer M., Rollig C. et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J. 2014; 4: e218.
  100. Godwin C.D., Gale R.P., Walter R.B. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia 2017; 31(9): 1855-68.
  101. Hofner T., Macher-Goeppinger S., Klein C. et al. Expression and prognostic significance of cancer stem cell markers CD24 and CD44 in urothelial bladder cancer xenografts and patients undergoing radical cystectomy. Urol. Oncol. 2014; 32(5): 678-86.
  102. Nosrati A., Naghshvar F., Khanari S. Cancer Stem Cell Markers CD44, CD133 in Primary Gastric Adenocarcinoma. Int. J. Mol. Cell. Med. 2014; 3(4): 279-86.
  103. Yan Y., Zuo X., Wei D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Transl. Med. 2015; 4(9): 1033-43.
  104. Lin J., Ding D. The prognostic role of the cancer stem cell marker CD44 in ovarian cancer: a meta-analysis. Cancer Cell Int. 2017; 17: 8.
  105. Horimoto Y., Arakawa A., Sasahara N. et al. Combination of Cancer Stem Cell Markers CD44 and CD24 Is Superior to ALDH1 as a Prognostic Indicator in Breast Cancer Patients with Distant Metastases. PLoS One 2016; 11(10): e0165253.
  106. Sahlberg S.H., Spiegelberg D., Glimelius B. et al. Evaluation of cancer stem cell markers cD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells. PLoS One 2014; 9(4): e94621.
  107. de Sousa E.M., Vermeulen L. Wnt Signaling in Cancer Stem Cell Biology. Cancers (Basel) 2016; 8(7).
  108. Schmitt M., Metzger M., Gradl D. et al. CD44 functions in Wnt signaling by regulating LRP6 localization and activation. Cell Death Differ. 2015; 22(4): 677-89.
  109. Gurtner K., Hessel F., Eicheler W. et al. Combined treatment of the immunoconjugate bivatuzumab mertansine and fractionated irradiation improves local tumour control in vivo. Radiother. Oncol. 2012; 102(3): 444-9.
  110. Riechelmann H., Sauter A., Golze W. et al. Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol. 2008; 44(9): 823-9.
  111. Vey N., Delaunay J., Martinelli G. et al. Phase I clinical study of RG7356, an anti-CD44 humanized antibody, in patients with acute myeloid leukemia. Oncotarget 2016; 7(22): 32532-42.
  112. Zhang H., Lu H., Xiang L. et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. PNAS USA 2015; 112(45): E6215-23.
  113. Chan K.S., Volkmer J.P., Weissman I. Cancer stem cells in bladder cancer: a revisited and evolving concept. Curr. Opin. Urol. 2010; 20(5): 393-7.
  114. Cheng Q.S., Wang X.B. [CD47 and leukemia stem cells]. Zhong-guo Shi Yan Xue Ye Xue Za Zhi 2010; 18(4): 1088-91.
  115. Liu X., Pu Y., Cron K. et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat. Med. 2015; 21(10): 1209-15.
  116. Liu J., Wang L., Zhao F. et al. Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. PLoS One 2015; 10(9): e0137345.
  117. Gholamin S., Mitra S.S., Feroze A.H. et al. Disrupting the CD47-SIRPalpha anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci. Transl. Med. 2017; 9(381).
  118. Kaur S., Elkahloun A.G., Singh S.P. et al. A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer. Oncotarget 2016; 7(9): 10133-52.
  119. Cheng J.X., Liu B.L., Zhang X. How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treat. Rev. 2009; 35(5): 403-8.
  120. Irollo E., Pirozzi G. CD133: to be or not to be, is this the real question? Am. J. Transl. Res. 2013; 5(6): 563-81.
  121. Park E.K., Lee J.C., Park J.W. et al. Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53. Cell Death Dis. 2015; 6: e1964.
  122. Huang J., Li C., Wang Y. et al. Cytokine-induced killer (CIK) cells bound with anti-CD3/anti-CD133 bispecific antibodies target CD133(high) cancer stem cells in vitro and in vivo. Clin. Immunol. 2013; 149(1): 156-68.
  123. Wang X., Sun Y., Wong J. et al. PPARgamma maintains ERBB2-positive breast cancer stem cells. Oncogene 2013; 32(49): 5512-21.
  124. De Abreu F.B., Wells W.A., Tsongalis G.J. The emerging role of the molecular diagnostics laboratory in breast cancer personalized medicine. Am. J. Pathol. 2013; 183(4): 1075-83.
  125. Roy V., Perez E.A. Beyond trastuzumab: small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer. Oncologist 2009; 14(11): 1061-9.
  126. Steelman L.S., Chappell W.H., Abrams S.L. et al. Roles of the Raf/ MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 2011; 3(3): 192-222.
  127. Vazquez-Martin A., Oliveras-Ferraros C., Del Barco S. et al. The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. Breast Cancer Res. Treat. 2011; 126(2): 355-64.
  128. Yu F., Zhao J., Hu Y. et al. The combination of NVP-BKM120 with trastuzumab or RAD001 synergistically inhibits the growth of breast cancer stem cells in vivo. Oncol. Rep. 2016; 36(1): 356-64.
  129. Ahmed N., Brawley V.S., Hegde M. et al. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J. Clin. Oncol. 2015; 33(15): 1688-96.
  130. Sengupta S., Mao G., Gokaslan Z.S. et al. Chimeric antigen receptors for treatment of glioblastoma: a practical review of challenges and ways to overcome them. Cancer Gene Ther. 2017; 24(3): 121-9.
  131. Dubrovska A., Hartung A., Bouchez L.C. et al. CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br. J. Cancer 2012; 107(1): 43-52.
  132. Wurth R., Bajetto A., Harrison J.K. et al. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front. Cell. Neurosci. 2014; 8: 144.
  133. Trautmann F., Cojoc M., Kurth I. et al. CXCR4 as biomarker for radioresistant cancer stem cells. Int. J. Radiat. Biol. 2014; 90(8): 687-99.
  134. Tang X., Li X., Li Z. et al. Downregulation of CXCR7 inhibits proliferative capacity and stem cell-like properties in breast cancer stem cells. Tumour Biol. 2016; 37(10): 13425-33.
  135. Sun X., Cheng G., Hao M. et al. CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 2010; 29(4): 709-22.
  136. Chatterjee S., Behnam Azad B., Nimmagadda S. The intricate role of CXCR4 in cancer. Adv. Cancer Res. 2014; 124: 31-82.
  137. Shan S., Lv Q., Zhao Y. et al. Wnt/beta-catenin pathway is required for epithelial to mesenchymal transition in CXCL12 over expressed breast cancer cells. Int. J. Clin. Exp. Pathol. 2015; 8(10): 12357-67.
  138. Jung M.J., Rho J.K., Kim Y.M. et al. Upregulation of CXCR4 is functionally crucial for maintenance of stemness in drug-resistant non-small cell lung cancer cells. Oncogene 2013; 32(2): 209-21.
  139. Dragu D.L., Necula L.G., Bleotu C. et al. Therapies targeting cancer stem cells: Current trends and future challenges. World J. Stem Cells 2015; 7(9): 1185-201.
  140. Singla A.K., Downey C.M., Bebb G.D. et al. Characterization of a murine model of metastatic human non-small cell lung cancer and effect of CXCR4 inhibition on the growth of metastases. Oncoscience 2015; 2(3): 263-71.
  141. Uy G.L., Rettig M.P., Motabi I.H. et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood 2012; 119(17): 3917-24.
  142. Zakaria N., Yusoff N.M., Zakaria Z. et al. Human non-small cell lung cancer expresses putative cancer stem cell markers and exhibits the transcriptomic profile of multipotent cells. BMC Cancer 2015; 15: 84.
  143. Gires O., Klein C.A., Baeuerle P.A. On the abundance of EpCAM on cancer stem cells. Nat. Rev. Cancer 2009; 9(2): 143.
  144. Baeuerle P.A., Gires O. EpCAM (CD326) finding its role in cancer. Br. J. Cancer 2007; 96(3): 417-23.
  145. Sadeghi S., Hojati Z., Tabatabaeian H. Cooverexpression of EpCAM and c-myc genes in malignant breast tumours. J. Genet. 2017; 96(1): 109-18.
  146. Imrich S., Hachmeister M., Gires O. EpCAM and its potential role in tumor-initiating cells. Cell Adh. Migr. 2012; 6(1): 30-8.
  147. Deng Z., Wu Y., Ma W. et al. Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol. 2015; 16: 1.
  148. Clay M.R., Tabor M., Owen J.H. et al. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck 2010; 32(9): 1195-201.
  149. Roudi R., Korourian A., Shariftabrizi A. et al. Differential Expression of Cancer Stem Cell Markers ALDH1 and CD133 in Various Lung Cancer Subtypes. Cancer Invest. 2015; 33(7): 294-302.
  150. Khorrami S., Zavaran Hosseini A., Mowla S.J. et al. Verification of ALDH Activity as a Biomarker in Colon Cancer Stem Cells-Derived HT-29 Cell Line. Iran. J. Cancer Prev. 2015; 8(5): e3446.
  151. Ricardo S., Vieira A.F., Gerhard R. et al. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J. Clin. Pathol. 2011; 64(11): 937-46.
  152. Chen J., Xia Q., Jiang B. et al. Prognostic Value of Cancer Stem Cell Marker ALDH1 Expression in Colorectal Cancer: A Systematic Review and Meta-Analysis. PLoS One 2015; 10(12): e0145164.
  153. Tomita H., Tanaka K., Tanaka T. et al. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 2016; 7(10): 11018-32.
  154. Teitz-Tennenbaum S., Wicha M.S., Chang A.E. et al. Targeting cancer stem cells via dendritic-cell vaccination. Oncoimmunology 2012; 1(8): 1401-3.

Copyright (c) 2018 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies