OMICS technologies in reproductive medicine: assessment of quality of oocytes and embryos

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


One of the main factors of success of the procedure art (assisted reproductive technology) is the selection of the most "high-quality” gametes for further manipulation and obtaining a viable embryo for implantation. The majority of modern techniques based on morphokinetic predictors of quality (i. e. assessment of embryo morphology and rate of division of the blastomeres), which allowed to achieve some success in increasing the percentage of successful pregnancies and reduce the number of multiple pregnancies, but their accuracy is currently insufficient. Thus, the development of objective, reliable, fast and affordable test systems to determine the quality of oocytes and the development potential of the embryo - one of the challenges of reproductive medicine. The purpose of this review was to describe the advantages and limitations obecnych technologies, the application of which will allow to deepen our understanding of the physiology of the embryo, as well as set criteria for non-invasive selection of gametes and embryos. In this regard, recently in assisted reproduction are applied the studies of genomic, proteomic, transcript, and metabolomic profiles of oocytes, granulosa and Cumulus cells, embryos, of conditioned media.

Full Text

Restricted Access

About the authors

E. A Zhiryaeva

Klinika semejnoj mediciny, LLC; Kazan (Volga region) Federal University

E. V Kiyasova

Kazan (Volga region) Federal University

A. A Rizvanov

Kazan (Volga region) Federal University



  1. Zegers-Hochschild F., Adamson G.D., de Mouzon J. et al. The International Committee for Monitoring Assisted Reproductive Technology and the World Health Organization Revised Glossary on ART Terminology. Fertility and Sterility 2009; 92: 1520-4.
  2. Nimmi R. Review literature on assisted reproductive technology. International Journal of Current Advanced Research 2017; 6(2): 2155-6.
  3. Calhaz-Jorge C., de Geyter C., Kupka M.S. et al. Assisted reproductive technology in Europe, 2012: results generated from European registers by ESHRE [editorial]. Human Reproduction 2016; 31(8): 1638-52.
  4. Gardner D.K., Meseguer M., Rubio C. et al. Diagnosis of human preimplantation embryo viability. Hum. Reprod. Update 2015; 21(6): 727-47.
  5. Dominguez F., Meseguer M., Aparicio-Ruiz B. et al. New strategy for diagnosing embryo implantation potential by combining proteomics and time-lapse technologies. Fertility and Sterility 2015; 104(4): 908-14.
  6. Lai H.H., Chuang T.H., Wong L.K. et al. Identification of mosaic and segmental aneuploidies by next-generation sequencing in preimplantation genetic screening can improve clinical outcomes compared to array-comparative genomic hybridization. Mol. Cytogenet. 2017; 10: 14.
  7. Корсак В.С., Смирнова А.А., Шурыгина О.В. Регистр центров ВРТ в России. Отчет за 2015 г. Проблемы репродукции 2017; 23(5): 8-22.
  8. Bromer J., Seli E. Assessment of embryo viability in assisted reproductive technologies: shortcomings of current approaches and the emerging role of metabolomics. Current Opinion in Obstetrics and Gynecology 2008; 20: 234-41.
  9. Silvestri E., Lombardi A., De Lange P. et al. Studies of complex biological systems with applications to molecular medicine: The need to integrate transcriptomic and proteomic approaches. Journal of Biomedicine and Biotechnology 2011; 2011: 810242.
  10. Картель Н.А. Генетика. В кн.: Энциклопедический словарь. 2011; Белорусская наука: 263-4.
  11. Munne S., Alikani M., Tomkin G. et al. Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities. Fertility and Sterility 1995; 64: 382-91.
  12. Fragouli E., Alfarawati S., Spath K. et al. The origin and impact of embryonic aneuploidy. Hum. Genet. 2013; 132: 1001-13.
  13. Munne S., Chen S., Colls P. et al. Maternal age, morphology, development and chromosome abnormalities in over 6000 cleavage-stage embryos. Reproductive Biomedicine Online 2007; 14: 628-34.
  14. Grondahl M.L., Christiansen S.L., Kesmodel U.S. et al. Effect of women’s age on embryo morphology, cleavage rate and competence - A multi-center cohort study. PLoS One 2017; 12(4): e0172456.
  15. Thornhill A., Geraedts J., Harper J.C. et al. ESHRE PGD Consortium «Best practice guidelines for PGD and PGS». Human Reproduction 2005; 20: 35-48.
  16. Lalioti M. Can preimplantation genetic diagnosis overcome recurrent pregnancy failure? Current Opinion in Obstetrics and Gynecology 2008; 20: 199-204.
  17. Корсак В.С., Балахонов А.В., Бичевая Н.К. Руководство по клинической эмбриологии. Москва: Издательство «МК»; 2011.
  18. Griffin D., Wilton L., Handyside A. et al. Dual fluorescent in situ hybridisation for simultaneous detection of X and Y chromosome-specific probes for the sexing of human preimplnatation embryonic nuclei. Human Genetics 1992; 89: 18-22.
  19. Munne S., Lee A., Rosenwaks Z. et al. Diagnosis of major chromosome aneuploidies in human preimplnatation embryos. Human Reproduction 1993; 8: 2185-91.
  20. Staessen C., Platteau P., Assche V. et al. Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Human Reproduction 2004; 19: 2849-58.
  21. Staessen C., Verpoest W., Donoso P. et al. Preimplantation genetic screening does not improve delivery rate in women under the age of 36 following single-embryo transfer. Human Reproduction 2008; 23: 2818-25.
  22. Mastenbroek S., Twisk M., van Echten-Arends J. et al. In vitro fertilization with preimplantation genetic screening. The New England Journal of Medicine 2007; 357: 9-17.
  23. Checa M., Alonso-Coello P., Sola I. et al. IVF/ICSI with or without preimplantation genetic screening for aneuploidy in couples without genetic disorders: a systematic review and meta-analysis. Journal of Assisted Reproduction and Genetics 2009; 26: 273-83.
  24. Practice Committee of the Society for Assisted Reproductive technology and the Practice Committee of the American Society for Reproductive Medicine. Preimplantation genetic testing: a Practice Committee opinion. Fertility and Sterility 2008; 90: 136-43.
  25. Harper J., Coonen E., De Rycke M. et al. What next for preimplantation genetic screening? A position statement from the ESHRE PGD Consortium steering committee. Human Reproduction 2010; 25: 821-23.
  26. Barbash-Hazan S., Frumkin T., Malcov M. et al. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertility and Sterility 2009; 92: 890-6.
  27. Baart E.B., Martini E., Berg I. et al. Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum. Reprod. 2006; 21(1): 223-33.
  28. Los F.J., Opstal D., Berg C. The development of cytogenetically normal, abnormal and mosaic embryos: a theoretical model. Hum. Reprod. Update 2004; 10(1): 79-94.
  29. Wilton L., Thornhill A., Traeger-Synodinos J. et al. The causes of misdiagnosis and adverse outcomes in PGD. Hum. Reprod. 2009; 24(5): 1221-8.
  30. Wilton L. Preimplantation genetic diagnosis and chromosome analysis of blastomeres using comparative genomic hybridization. Human Reproduction Update 2005; 11: 33-41.
  31. Миньженкова М.Е., Шилова Н.В., Макарова Ж.Г. и соавт. Эффективность различных методов диагностики хромосомных аномалий при репродуктивных потерях. Медицинская генетика 2014; 13(2): 25-30.
  32. Kallionemi A., Kallionemi P., Sudar D. et al. Comparative genetic hybridisation for molecular cytogenetic analysis of solid tumors. Science 1992; 258: 818-21.
  33. Wells D., Alfarawati S., Fragoui E. Use of comprehensive chromosomal screening for embryo assessment: microarrays and CGH. Molecular Human Reproduction 2008; 12: 703-10.
  34. Wells D., Sherlock J., Handyside A. et al. Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation. Nucleic Acids Research 1999; 27: 1214-8.
  35. Voullaire L., Wilton L., Sargeant P. et al. Preimplantation aneuploidy screening using comparative genomic hybridisation or fluorescence in situ hybridisation of embryos from patients recurrent implantation failure. Fertility and Sterility 2003; 80: 860-8.
  36. Миньженкова М.Е. Метафазная сравнительная геномная гибридизация в диагностике хромосомного дисбаланса. Автореферат дисс. кандид. Медицинских наук. Москва; 2014.
  37. Shaffer L. Targeted genomic microarray analysis for identification of chromosome abnormalities in 1500 consecutive clinical cases. The Journal of Pediatrics 2006; 149(1): 98-102.
  38. Shaffer L.G., Bui T.H. Molecular cytogenetic and rapid aneuploidy detection methods in prenatal diagnosis. Am. J. Med. Genet. C Semin. Med. Genet. 2007; 145: 87-98.
  39. Handyside A.H. 24-chromosome copy number analysis: a comparison of available technologies. Fertility and Sterility 2013; 100(3): 595-602.
  40. Treff N.R., Fedick A., Tao X. et al. Evaluation of targeted nextgeneration sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertil. Steril. 2013; 99: 1377-84.
  41. Fiorentino F., Bono S., Biricik A. et al. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Human Reproduction 2014; 29(12): 2802-13.
  42. Zozola S., Schiewe M.C., Blazek J. et al. Reanalysis of failed vitrified euploid blastocyst transfer cycles using next-generation sequencing. Fertility and Sterility 2015; 104(3): 279.
  43. Latham K., Garrels J., Chang C. et al. Analysis of embryonic mouse development: construction of a high-resolution, two-dimensional gel protein database. Applied and theoretical electrophoresis 1992; 2: 163-70.
  44. Navarrete S., Tonack S., Kirstein M. et al. Two insulin-responsive glucose transporter isoforms and the insulin receptor are developmentally expressed in rabbit preimplantation embryos. Reproduction 2004; 128: 503-16.
  45. Wang Y., Puscheck E., Lewis J. et al. Increases in phosphorylation of SAPK/JNK and p38MAPK correlate negatively with mouse embryo development after culture in different media. Fertility and Sterility 2005; 1: 1144-54.
  46. Gutstein H., Morris J., Annangudi S. et al. Microproteomics: analysis of protein diversity in small samples. Mass Spectrometry Reviews 2008; 27: 316-30.
  47. Katz-Jaffe M., Gardner D., Schoolcraft W. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability. Fertility and Sterility 2006; 85(1): 101-7.
  48. Dominguez F., Gadea B., Esteban F. et al. Comparative protein-profile analysis of implanted versus non-implanted human blastocysts. Human Reproduction 2008; 23(9): 1993-2000.
  49. Dominguez F., Meseguer M., Aparicio-Ruiz B. et al. New strategy for diagnosing embryo implantation potential by combining proteomics and time-lapse technologies. Fertility and Sterility 2015; 104(4): 908-14.
  50. O’Neill C. The role of PAF in embryo physiology. Human Reproduction Update 2005; 11: 215-28.
  51. Cervero A., Horcajadas J., Dominguez F. et al. Leptin system in embryo development and implantation: a protein in search of a function. Reproductive Biomedicine Online 2005; 10: 217-23.
  52. Mutz K.O., Heilkenbrinker A., Lonne M. et al. Transcriptome analysis using next-generation sequencing. Current opinion in biotechnology 2013; 24(1): 22-30.
  53. Куцын К.А. Эпигенетика эмбрионального развития человека. Ростов-на-Дону: Издательство Южного федерального университета; 2013.
  54. Biase F., Everts R., Oliveira R. et al. Messenger RNAs in MII oocytes correlate with successful embryo development to the blastocyst stage. Zygote 2012; 10: 1-11.
  55. Ouandaogo Z., Frydman N., Hesters L. et al. Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Human Reproduction 2012; 27: 2438-47.
  56. McKenzie L., Pangas S., Carson S. et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Human Reproduction 2004; 19: 2869-74.
  57. Assou S., Haouzi D., De Vos J. et al. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Molecular Human Reproduction 2010; 16: 531-8.
  58. Wood J., Dumesic D., Abbott D. et al. 3rd Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. The Journal of Clinical Endocrinology and Metabolism 2007; 92: 705-13.
  59. Egea R.R., Puchalt N.G., Escriva M.M. et al. OMICS: Current and future perspectives in reproductive medicine and technology. J. Hum. Reprod. Sci. 2014; 7(2): 73-92.
  60. Zhang X., Jafari N., Barnes R. et al. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertility and Sterility 2005; 83 Suppl 1: 1169-79.
  61. Inan M., Al-Hassan S., Ozand P. et al. Transcriptional profiling of granulosa cells from a patient with recurrent empty follicle syndrome. Reproductive Biomedicine Online 2006; 13: 481-91.
  62. Assou S., Haouzi D., Mahmoud K. et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Molecular Human Reproduction 2008; 14: 711-9.
  63. Brison D., Hollywood K., Arnesen R. et al. Predicting human embryo viability: The road to non-invasive analysis of the secretome using metabolic footprinting. Reproductive Biomedicine Online 2007; 15: 296-302.
  64. Singh R., Sinclair K. Metabolomics: approaches to assessing oocyte and embryo quality. Theriogenology 2007; 68 Suppl 1: 56-62.
  65. Nagy Z., Sakkas D., Behr B. Symposium: Innovative techniques in human embryo viability assessment. Non-invasive assessment of embryo viability by metabolomic profiling of culture media. Reproductive Biomedicine Online 2008; 17: 502-7.
  66. Borges E., Braga D., Setti A.S. et al. Non-invasive prediction of blastocyst implantation, ongoing pregnancy and live birth, by mass spectrometry lipid fingerprinting. JBRA Assist. Reprod. 2016; 20(4): 227-31.
  67. Rubakhin S.S., Elena V., Romanova E.V. et al. Profiling Metabolites and Peptides in Single Cells. Nat. Methods 2011; 8 Suppl 4: 20-9.
  68. Botros L., Sakkas D., Seli E. Metabolomics and its application for non-invasive embryo assessment in IVF. Molecular Human Reproduction 2008; 14(12): 679-90.
  69. Renard J., Philippon A., Menezo Y. In vitro uptake of glucose by bovine blastocysts. Journal of Reproduction and Fertility 1980; 58(1): 161-4.
  70. Van den Bergh M., Devreker F., Emilian S. et al. Glycolytic activity: a possible tool for human blastocyst selection. Reproductive Biomedicine Online 2001; 3 Suppl 1: 8.
  71. Houghton F., Hawkhead J., Humpherson P. et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Human Reproduction 2002; 17(4): 999-1005.
  72. Brison D., Houghton F., Falconer D. et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Human Reproduction 2004; 19(10): 2319-24.
  73. Picton H., Elder K., Houghton F. et al. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Molecular Human Reproduction 2010; 16(8): 557-69.
  74. Seli E., Sakkas D., Scott R. et al. Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertility and Sterility 2007; 88: 1350-7.
  75. Li D., Zhai W., Li Y. et al. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta 2014; 181: 23-43.
  76. Waddington C. The epigenotype. International Journal of Epidemiology 2012; 41: 10-3.
  77. Singh K., Jaiswal D. Human male infertility: a complex multifactorial phenotype. Reproductive Sciences 2011; 18: 418-25.
  78. Zama A., Uzumcu M. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: an ovarian perspective. Front. Neuroendocrinol. 2010; 31: 420-39.
  79. Iliadou A., Janson P., Cnattingius S. Epigenetics and assisted reproductive technology. Journal of Internal Medicine 2011; 270: 414-20.
  80. van Montfoort A., Hanssen L., Sutter P. et al. Assisted reproduction treatment and epigenetic inheritance. Human Reproduction Update 2012; 18: 171-97.
  81. Berger S. The complex language of chromatin regulation during transcription. Nature 2007; 447: 407-12.
  82. Odom L., Segars J. Imprinting disorders and assisted reproductive technology. Current Opinion in Endocrinology, Diabetes and Obesity 2010; 17: 517-22.
  83. Sato A., Otsu E., Negishi H. et al. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Human Reproduction 2007; 22(1): 26-35.
  84. Montfoort A.P., Hanssen L.L., de Sutter P. et al. Assisted reproduction treatment and epigenetic inheritance. Hum. Reprod. Update 2012; 18(2): 171-97.
  85. Пузырев В.П. Медицинская патогенетика. Вавиловский журнал генетики и селекции 2014; 18(1): 7-21.
  86. Bunkar N., Pathak N., Lohiya N.K. et al. Epigenetics: A key paradigm in reproductive health. Clin. Exp. Reprod. Med. 2016; 43(2): 59-81.
  87. Саженова Е.А., Лебедев И.Н. Эпигенетические модификации импринтированных генов как фактор риска вспомогательных репродуктивных технологий. Вестник НГУ. Серия: Биология, клиническая медицина 2010; 8(4): 46-51.
  88. Лебедев И.Н. Эпигенетические аспекты нарушений эмбрионального развития человека. Экологическая генетика 2011; 9(3): 15-9.
  89. Huang J.C., Lei Z.L., Shi L.H. et al. Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos. Biochem. Biophys. Res. Commun. 2007; 354(1): 77-83.
  90. Ma H., Marti-Gutierrez N., Park S.W. et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017; 548: 413-9.
  91. Liang P., Xu Y., Zhang X. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6(5): 363-72.
  92. Ledford H. Where in the world could the first CRISPR baby be born? Nature 2015; 526: 310-1.

Copyright (c) 2018 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies