Bone marrow stem cells for the critical limb ischemia treatment: biological aspects and clinical application

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Cell therapy is one of the most promising directions in the treatment of critical limb ischemia (CLI). In spite of certain advances achieved in this field in the last decades, which are related to application of bone marrow stem cells (BMSC), a large number of problems still remain unsolved. In this review, we discuss the BMSC biology, mechanisms of their therapeutic effect in the CLI treatment and results of the most notable BMSC-based clinical studies in detail.

Full Text

Restricted Access

About the authors

P. Yu. Orekhov

Federal Research Clinical Center FMBA of Russia

MA. Konoplyannikov

Federal Research Clinical Center FMBA of Russia; I.M. Sechenov First Moscow State Medical University, Institute for Regenerative Medicine

V. P Baklaushev

Federal Research Clinical Center FMBA of Russia

VA. A Kalsin

Federal Research Clinical Center FMBA of Russia

A. V Averyanov

Federal Research Clinical Center FMBA of Russia


A. G Konopliannikov

A.F. Tsyb Medical Radiological Research Center (National Medical Research Center for Radiology)

R. I Habazov

Federal Research Clinical Center FMBA of Russia

A. V Troitskiy

Federal Research Clinical Center FMBA of Russia


  1. Norgren L., Hiatt W.R., Dormandy J.A. et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur. J. Vasc. Endovasc. Surg. 2007; 33: S1-S75.
  2. Sprengers R.W., Teraa M., Moll F.L. et al. Quality of life in patients with no- option critical limb ischemia underlines the need for new effective treatment. J. Vasc. Surg. 2010; 52: 843-9.
  3. Benoit E., O’Donnell T.F., Iafrati M.D. et al. The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design. J. Transl. Med. 2011; 9: 165.
  4. Лебедев С.В., Карасев А.В., Кунгурцев В.В. и др. Клеточная терапия критической ишемии нижних конечностей (проблемы и перспективы). Вестник РАМН 2013; 3: 33-44.
  5. Tateishi-Yuyama E., Matsubara H., Murohara T. et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427-35.
  6. Булгин О.В., Андреева Д.В. Терапевтический ангиогенез с использованием факторов роста и клеток костного мозга: биологические основы и перспективы клинического применения. Вестник трансплантологии и искусственных органов 2015; 17(3): 89-111.
  7. Белевитин А.Б., Хубулава Г.Г., Сазонов А.Б. и соавт. Использование аутологичных стволовых клеток для стимуляции артериогенеза при критической ишемии нижних конечностей. Вестник Российской Военномедицинской академии 2008; 3(23): 176-80.
  8. Капутин М.Ю., Бурнос С.Н. Применение стволовых клеток для лечения больных с критической ишемией нижних конечностей. Вестник хирургии им. Грекова 2015; 174(1): 103-8.
  9. Каргин В.Д., Бессмельцев С.С., Солдатенков В.Е. и др. Терапевтический ангиогенез в лечении хронической ишемии конечностей,
  10. Демидова О.А., Бокерия Л.А., Еремеева М.В. и др. Индуцированный ангиогенез у больных с хронической критической ишемией нижних конечностей. Бюллетень НЦССХ им. А.Н. Бакулева РАМН Сердечно-сосудистые заболевания 2015; 16(S6): 246.
  11. Каргин В.Д., Солдатенков В.Е., Бессмельцев С.С. и др. Эффективность применения аутологической трансплантации стволовых клеток периферической крови при хронической ишемии нижних конечностей,
  12. Корымасов Е.А., Тюмина О.В., Казанцев А.В. и др. Результаты рандомизированного двойного слепого плацебо контролируемого исследования эффективности лечения аутогенными прогениторными клетками костного мозга больных с облитерирующим атеросклерозом артерий нижних конечностей. Клеточная трансплантология и тканевая инженерия 2008; III(3): 57-62.
  13. Barc P., Skôra J., Pupka A. et al. Bone-marrow cells in therapy of critical limb ischaemia of lower extremitiesdown experience. Acta Angiol. 2006; 12: 155-66.
  14. Dash N.R., Dash S.N., Routray P. et al. Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res. 2009; 12: 359-66.
  15. Lawall H., Bramlage P., Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb. Haemost. 2010; 103: 696-709.
  16. Gupta R., Losordo D.W. Cell Therapy for Critical Limb Ischemia. Moving Forward One Step at a Time. Circulation: Cardiovascular Interventions 2011; 4: 2-5.
  17. Travlos G.S. Normal structure, function, and histology of the bone marrow. Toxicol. Pathol. 2006; 34(5): 548-65.
  18. Alvarez-Viejo M., Menendez-Menendez Y., BlancoGelaz M.A. et al. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transplant. Proc. 2013; 45(1): 434-9.
  19. Prockop D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276(5309): 71-4.
  20. Alhadlaq A., Mao J.J. Mesenchymal stem cells: isolation and therapeutics. Stem Cells and Development 2004; 13(4): 436-48.
  21. Pittenger M.F. Mesenchymal stem cells from adult bone marrow. Methods Molecular Biology 2008; 449: 27-44.
  22. Astori G., Soncin S., Lo Cicero V. et al. Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products. Am. J. Transl. Res. 2010; 2(3): 285-95.
  23. Barry F.P., Murphy J.M. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol. 2004; 36: 568-84.
  24. Lian Q., Zhang Y., Zhang J. et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 2010; 121: 1113-23.
  25. Kim Y., Kim H., Cho H. et al. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell. Physiol. Biochem. 2007; 20: 867-76.
  26. Friedenstein A.J., Petrakova K.V., Kurolesova A.I. et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6: 230-47.
  27. Zuk P.A., Zhu M., Mizuno H. et al. Multilineage cells from human adipose tissue: implication for cell-based therapies. Tissue Eng. 2001; 7: 211-28.
  28. Williams J.T., Southerland S.S., Souza J. et al. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am. Surg. 1999; 65: 22-6.
  29. Gronthos S., Arthur A., Bartold P.M. et al. A method to isolate and culture expand human dental pulp stem cells. J. Methods Mol. Biol. 2011; 698: 107-21.
  30. Bianco P., Robey P.G., Simmons P.J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008; 2: 313-9.
  31. Rebelatto C.K., Aguiar A.M., Moretao M.P. et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp. Biol. Med. 2008; 233: 901-13.
  32. Iso Y., Spees J.L., Serrano C. et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem. Biophys. Res. Commun. 2007; 354(3): 700-6.
  33. Lim S.Y., Kim Y.S., Ahn Y. et al. The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovasc. Res. 2006; 70(3): 530-42.
  34. Amado L.C., Saliaris A.P., Schuleri K.H. et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. PNAS USA 2005; 102(32): 11474-9.
  35. Si Y.L., Zhao Y.L., Hao H.J. et al. MSCs: Biological characteristics, clinical applications and their outstanding concerns. Ageing Res. Rev. 2011; 10: 93-103.
  36. Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J. Nippon Med. Sch. 2009; 76: 56-66.
  37. Zuk P.A., Zhu M., Ashjian P. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 2002; 13: 4279-95.
  38. Kern S., Eichler H., Stoeve J. et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294-301.
  39. Powell R.J., Comerota A.J., Berceli S.A. et al. Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J. Vasc. Surg. 2011; 54: 1032-41.
  40. Gruber R., Kandler B., Holzmann P. et al. Bone marrow stromal cells can provide a local environment that favors migration and formation of tubular structures of endothelial cells. Tissue Eng. 2005; 11: 896-903.
  41. Wang C.Y., Yang H.B., Hsu H.S. et al. Mesenchymal stem cell-conditioned medium facilitates angiogenesis and fracture healing in diabetic rats. J. Tissue Eng. Regen. Med. 2012; 6(7): 559-69.
  42. Chapel A., Bertho J.M., Bensiodhoum M. et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi organ failure syndrome. J. Gene Med. 2003; 5: 1028-38.
  43. Chavakis E., Urbich C., Dimmeler S. Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J. Mol. Cell. Cardiol. 2008; 45: 514-22.
  44. Kang Y., Park C., Kim D. et al. Unsorted human adipose tissue-derived stem cells promote angiogenesis and myogenesis in murine ischemic hindlimb model. Microvasc. Res. 2010; 80: 310-6.
  45. Zhang P., Baxter J., Vinod K. et al. Endothelial differentiation of amniotic fluid-derived stem cells: synergism of biochemical and shear force stimu li. Stem Cells Dev. 2009; 18: 1299-308.
  46. Marchionni C., Bonsi L., Alviano F. et al. Angiogenic potential of human dental pulp stromal (stem) cells. Int. J. Immunopathol. Pharmacol. 2009; 22: 699-706.
  47. Duffy G.P., Ahsan T., O’Brien T. et al. Bone marrow-derived mesenchymal stem cells promote angiogenic processes in a time- and dose-dependent manner in vitro. Tissue Eng. Part A 2009; 15: 2459-70.
  48. Kinnaird T., Stabile E., Burnett M.S. et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004; 109: 1543-9.
  49. De la Garza-Rodea A.S., Van der Velde-van Dijke I., Boersma H. et al. Myogenic properties of human mesenchymal stem cells derived from three different sources. Cell Transplant. 2012; 21: 153-73.
  50. Leroux L., Descamps B., Tojais N.F. et al. Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol. Ther. 2010; 18: 1545-52.
  51. O’Brien L.T. Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res. Ther. 2012; 3: 28.
  52. Burns T.C., Verfaillie C.M., Low W.C. Stem cells for ischemic brain injury: a critical review. J. Comp. Neurol. 2009; 515: 125-44.
  53. Lindvall O., Kokaia Z. Stem cells for the treatment of neurological disorders. Nature 2006; 441: 1094-6.
  54. Altaner C., Altanerova V., Cihova M. et al. Characterization of Mesenchymal Stem Cells of “No-Options” Patients with Critical Limb Ischemia Treated by Autologous Bone Marrow Mononuclear Cells. PLOS ONE 2013; 8(9): e73722.
  55. Sugihara S., Yamamoto Y., Matsuura T. et al. Age-related BM-MNC dysfunction hampers neovascularization. Mech. Ageing Dev. 2007; 128(9): 511-6.
  56. Stolzing A., Jones E., McGonagle D. et al. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech. Ageing Dev. 2008; 129(3): 163-73.
  57. Nauta A.J., Fibbe W.E. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007; 110: 3499-506.
  58. Oh J.Y., Kim M.K., Shin M.S. et al. The anti-inflammatory and antiangiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells 2008; 26: 1047-55.
  59. Ankrum J., Karp J.M. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med. 2010; 16(5): 203-9.
  60. Kinnaird T., Stabile E., Burnett M.S. et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 2004; 94: 678-85.
  61. Chen L., Tredget E.E., Wu P.Y. et al. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLOS ONE 2008; 3: e1886.
  62. Bouffi C., Bony C., Courties G. et al. IL-6- dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLOS ONE 2010; 5: e14247.
  63. DiPietro L.A., Burdick M., Low Q.E. et al. MIP-1alpha as a critical macrophage chemoattractant in murine wound repair. J. Clin. Invest. 1998; 101: 1693-8.
  64. Boomsma R.A., Geenen D.L. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLOS ONE 2012; 7: e35685.
  65. Krasnodembskaya A., Song Y., Fang X. et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28: 2229-38.
  66. Rehman J., Traktuev D., Li J. et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109: 1292-8.
  67. Iwase T., Nagaya N., Fujii T. et al. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc. Res. 2005; 66: 543-51.
  68. Hoffmann J., Glassford A.J., Doyle T.C. et al. Angiogenic effects despite limited cell survival of bone marrow-derived mesenchymal stem cells under ischemia. Thorac. Cardiovasc. Surg. 2010; 58: 136-42.
  69. Schwarz T.M., Leicht S.F., Radic T. et al. Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy. Arterioscler. Thromb. Vasc. Biol. 2012; 32: e13-e21.
  70. Ryu J.C., Davidson B.P., Xie A. et al. Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia. Circulation 2013; 127: 710-9.
  71. Liao W., Zhong J., Yu J. et al. Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of antiinflammation and angiogenesis. Cell. Physiol. Biochem. 2009; 24: 307-16.
  72. Ishikane S., Ohnishi S., Yamahara K. et al. Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hindlimb ischemia. Stem Cells 2008; 26: 2625-33.
  73. Le Blanc K., Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J. Intern. Med. 2007; 262: 509-25.
  74. Puissant B., Barreau C., Bourin P. et al. Immunomodulatory effect of human adipose tissue-derived adult stem cell: comparison with bone mar-rowmesenchymal stem cells. Brit. J. Haematol. 2005; 129(1): 118-29.
  75. Jones S., Horwood N., Cope A. et al. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J. Immunol. 2007; 179: 2824-31.
  76. Corcione A., Benvenuto F., Ferretti E. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107: 367-72.
  77. Bonfield T.L., Nolan Koloze M.T., Lennon D.P. et al. Defining human mesenchymal stem cell efficacy in vivo. J. Inflamm. (Lond.) 2010; 7: 51.
  78. Meirelles Lda S., Fontes A.M., Covas D.T. et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009; 20: 419-27.
  79. Fiorina P., Jurewicz M., Augello A. et al. Immunomodulatory function of bone marrow derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J. Immunol. 2009; 183: 993-1004.
  80. Bouffi C., Djouad, F., Mathieu M. et al. Multipotent mesenchymal stromal cells and rheumatoid arthritis: risk or benefit? Rheumatology 2009; 48: 1185-9.
  81. Wakitani S., Okabe T., Horibe S. et al. Safety of autologous bone marrow- derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J. Tissue Eng. Regen. Med. 2011; 5: 146-50.
  82. Van Tongeren R.B., Hamming J.F., Fibbe W.E. et al. Intramuscular or combined intramuscular/intra-arterial administration of bone marrow mononuclear cells: a clinical trial in patients with advanced limb ischemia. J. Cardiovasc. Surg. (Torino) 2008; 49: 51-8.
  83. Matoba S., Tatsumi T., Murohara T. et al. TACT Follow-up Study Investigators. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am. Heart J. 2008; 156: 1010-8.
  84. Amann B., Luedemann C., Ratei R. et al. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant. 2009; 18: 371-80.
  85. Lara-Hernandez R., Lozano-Vilardell P., Blanes P. et al. Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Ann. Vasc. Surg. 2010; 24: 287-94.
  86. Idei N., Soga J., Hata T. et al. Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia: a comparison of atherosclerotic peripheral arterial disease and Buerger disease. Circ. Cardiovasc. Interv. 2011; 4: 15-25.
  87. Walter D.H., Krankenberg H., Balzer J.O. et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ. Cardiovasc. Interv. 2011; 4: 26-37.
  88. Schiavetta A., Maione C., Botti C. et al. A phase II trial of autologous transplantation of bone marrow stem cells for critical limb ischemia: results of the Naples and Pietra Ligure Evaluation of Stem Cells study. Stem Cells Transl. Med. 2012; 1: 572-8.
  89. Benoit E., O’Donnell T.F. Jr., Patel A.N. Safety and efficacy of autologous cell therapy in critical limb ischemia: a systematic review of the literature. Cell Transplant. 2013; 22: 545-62.
  90. Lu D., Chen B., Liang Z. et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res. Clin. Pract. 2011; 92: 26-36.
  91. Peeters Weem S.M., Teraa M., de Borst G.J. et al. Bone Marrow derived Cell Therapy in Critical Limb Ischemia: A Meta-analysis of Randomized Placebo Controlled Trials. Eur. J. Vasc. Endovasc. Surg. 2015; 50: 775-83.
  92. Liang T.W., Jester A., Motaganahalli R.L. et al. Autologous bone marrow mononuclear cell therapy for critical limb ischemia is effective and durable. J. Vasc. Surg. 2016; 63(6): 1541-5.
  93. Jonsson T.B., Larzon T., Arfvidsson B. et al. Adverse events during treatment of critical limb ischemia with autologous peripheral blood mononuclear cell implant. Int. Angiol. 2012; 31(1): 77-84.
  94. Lasala G.P., Silva J.A., Gardner P.A. et al. Combination stem cell therapy for the treatment of severe limb ischemia: safety and efficacy analysis. Angiology 2010; 61: 551-6.
  95. Lasala G.P., Silva J.A., Minguell J.J. Therapeutic angiogenesis in patients with severe limb ischemia by transplantation of a combination stem cell product. J. Thorac. Cardiovasc. Surg. 2012; 144(2): 377-82.
  96. Sprengers R.W., Lips D.J., Moll F.L. et al. Progenitor cell therapy in patients with critical limb ischemia without surgical options. Ann. Surg. 2008; 247: 411-20.
  97. Kajiguchi M., Kondo T., Izawa H. et al. Safety and efficacy of autologous progenitor cell transplantation for therapeutic angiogenesis in patients with critical limb ischemia. Circ. J. 2007; 71: 196-201.
  98. Fadini G.P., Agostini C., Avogaro A. Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis 2010; 209(1): 10-7.
  99. Tang Y., Cui Y.C., Wang X.J. et al. Neural progenitor cells derived from adult bone marrow mesenchymal stem cells promote neuronal regeneration. Life Sci. 2012; 91: 951-8.
  100. Liu F., Dong J., Sun S. et al. Autologous bone marrow stem cell transplantation in critical limb ischemia: a meta-analysis of randomized controlled trials. Chin. Med. J. 2012; 125(23): 4296-300.
  101. Teraa M., Sprengers R.W., van der Graaf Y. et al. Autologous bone marrow-derived cell therapy in patients with critical limb ischemia: a meta- analysis of randomized controlled clinical trials. Ann. Surg. 2013; 258: 922-9.
  102. Li M., Zhou H., Jin X. et al. Autologous bone marrow mononuclear cells transplant in patients with critical leg ischemia: preliminary clinical results. Exp. Clin. Transpl. 2013; 11: 435-9.
  103. Gupta P.K., Chullikana A., Parakh R. et al. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J. Transl. Med. 2013; 11: 143.
  104. Raval A.N., Schmuck E.G., Tefera G. et al. Bilateral administration of autologous CD133 cells in ambulatory patients with refractory critical limb ischemia: lessons learned from a pilot randomized, double blind, placebo controlled trial. Cytotherapy 2014; 16: 1720-32.
  105. Teraa M., Sprengers R.W., Schutgens R. et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double blind, placebo controlled JU-VENTAS Trial. Circulation 2015; 131: 851-60.
  106. Losordo D.W., Kibbe M.R., Mendelsohn F. et al. A randomized, controlled pilot study of autologous CD34 cell therapy for critical limb ischemia. Circ. Cardiovasc. Interv. 2012; 5: 821-30.
  107. Ai M., Yan C.F., Xia F.C. et al. Safety and efficacy of cell-based therapy on critical limb ischemia: A meta-analysis. Cytotherapy 2016; 18(6): 712-24.
  108. Huang P., Li S., Han M. et al. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells impuroves critical limb ischemia in diabetes. Diabetes Care 2005; 28: 2155-60.
  109. Tongers J., Roncalli J.G., Losordo D.W. Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation 2008; 118: 9-16.
  110. Murphy M.P., Lawson J.H., Rapp B.M. et al. Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia. J. Vasc. Surg. 2011; 53: 1565-74.
  111. Klepanec A., Mistrik M., Altaner C. et al. No Difference in Intra-Arterial and Intramuscular Delivery of Autologous Bone Marrow Cells in Patients With Advanced Critical Limb Ischemia. Cell Transplantation 2012; 21: 1909-18.
  112. Van Tongeren R.B., Hamming J.F., le Cessie S. et al. Limited value of digital subtraction angiography in the evaluation of cell-based therapy in patients with limb ischemia. Int. J. Cardiovasc. Imaging 2010; 26: 19-25.
  113. Toma C., Wagner W.R., Bowry S. et al. Fate of cultured-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circ. Res. 2009; 104(3): 398-402.
  114. Furlani D., Ugurlucan M., Ong L. et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc. Res. 2009; 77(3): 370-6.
  115. Konoplyannikov A.G., Petriev V.M., Konoplyannikova O.A. Effects of (60) ^ whole-body gamma-irradiation in different doses on the distribution of (188) Re-labeled autologous mesenchymal stem cells in Wistar rats after intravenous (systemic) transplantation during different periods after exposure. Bull. Exp. Biol. Med. 2008; 145(4): 520-5.
  116. Gruenloh W., Kambal A., Sondergaard C. et al. Characterization and in vivo testing of mesenchymal stem cells derived from human embryonic stem cells. Tissue Eng. Part A 2011; 17: 1517-25.
  117. Lee R.H., Pulin A.A., Seo M.J. et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5: 54-63.
  118. Amann B., Ludemann C., Ruckert R. et al. Design and rationale of a randomized, double-blind, placebo-controlled phase III study for autologous bone marrow cell transplantation in critical limb ischemia: The Bone Marrow Outcomes Trial in Critical Limb Ischemia (BONMOT-CLI). J. Vasc. Dis. 2008; 37: 319-25.
  119. Ruiz-Salmeron R., de la Cuesta-Diaz A., Constantino-Bermejo M. et al. Angiographic demonstration of neoangiogenesis after intraarterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant. 2011; 20: 1629-39.
  120. Lenk K., Adams V., Lurz P. et al. Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischemia. Eur. Heart J. 2005; 26: 1903-9.
  121. Cobellis G., Silvestroni A., Lillo S. et al. Long-term effects of repeated autologous transplantation of bone marrow cells in patients affected by peripheral arterial disease. Bone Marrow Transplant. 2008; 42: 667-72.
  122. Bartsch T., Brehm M., Zeus T. et al. Autologous mononuclear stem cell transplantation in patients with peripheral occlusive arterial disease. J. Cardiovasc. Nurs. 2006; 21: 430-2.
  123. Chavakis E., Aicher A., Heeschen C. et al. Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J. Exp. Med. 2005; 201: 63-72.
  124. Gu Y.Q., Zhang J., Guo L.R. et al. Transplantation of autologous bone marrow mononuclear cells for patients with lower limb ischemia. Chin. Med. J. 2008; 121: 963-7.
  125. Lenk K., Adams V., Lurz P. et al. Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur. Heart J. 2005; 26: 1903-9.
  126. Chochola M., Pytlik R., Kobylka P. et al. Autologous intra-arterial infusion of bone marrow mononuclear cells in patients with critical limb ischemia. Int. Angiol. 2008; 27: 281-90.
  127. Li S.H., Lai T.Y. Tracking cardiac engraftment and distribution of implanted bone marrow cells: Comparing intra-aortic, intravenous and intramyocardial delivery. J. Thorac. Cardiovasc. Surg. 2009; 137(5): 1225-33.
  128. Романов Ю.А., Смирнов В.Н. Мезенхимальные стволовые клетки: биология и перспективы клинического применения. В: Пальцев М.А., редактор. Биология стволовых клеток и клеточные технологии. В 2-х томах. Москва: Медицина; 2009. т. 1: 193-205.
  129. Калашникова М.В., Брутер А.В., Белявский А.В. Оценка выживания мезенхимальных стволовых клеток при разных способах введения. В: Стволовые клетки и регенеративная медицина. Материалы V Всероссийской научно-практическай конференции; 2013, 18-21 ноября; Москва, Россия; 2013: 30.
  130. Hare J.M., Traverse J.H., Henry T.D. et al. A randomized, doubleblind, placebo controlled dose-escalation study of intravenous adult human mesenchymal stem cells (Prochymal ™ ) following acute myocardial infarction. J. Am. Coll. Cardiol. 2009; 54: 2277-86.
  131. Zhou B., Poon M.C., Pu W.T. et al. Therapeutic neovascularization for peripheral arterial diseases: advances and perspectives. Histol. Histopathol. 2007; 22: 677-86.
  132. Prochâzka V., Gumulec J., Jaluvka, F. et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010; 19: 1413-24.
  133. Molavi B., Zafarghandi M.R., Aminizadeh E. et al. Safety and Efficacy of Repeated Bone Marrow Mononuclear Cell Therapy in Patients with Critical Limb Ischemia in a Pilot Randomized Controlled Trial. Arch. Iran Med. 2016; 19(6): 388-96.
  134. Bartsch T., Brehm M., Zeus T. et al. Transplantation of autologous mononuclear bone marrow stem cells in patients with peripheral arterial disease (the TAM-PAD study). Clin. Res. Cardiol. 2007; 96: 891-9.
  135. Franz R.W., Parks A., Shah K.J. et al. Use of autologous bone marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease. J. Vasc. Surg. 2009; 50: 1378-90.
  136. Franz R.W., Shah K.J., Johnson J.D. et al. Short to mid-term results using autologous bone-marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease. Vasc. Endovascular Surg. 2011; 45: 398-406.
  137. Strauer B.E., Brehm M., Zeus T. et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002; 106: 1913-8.
  138. Yoshida M., Horimoto H., Mieno S. Intra-arterial bone marrow cell transplantation induces angiogenesis in rat hindlimb ischemia. Eur. Surg. Res. 2003; 35: 86-91.
  139. Van Royen N., Schirmer S.H., Atasever B. et al. START Trial: a pilot study on stimulation of arteriogenesis using subcutaneous application of granulocytemacrophage colony-stimulating factor as a new treatment for peripheral vascular disease. Circulation 2005; 112: 1040-6.
  140. Lee H.C., An S.G., Lee H.W. et al. Safety and effect of adipose tissue- derived stem cell implantation in patients with critical limb ischemia. Circ. J. 2012; 76(7): 1750-60.
  141. Suzuki H., Iso Y. Clinical Application of Vascular Regenerative Therapy for Peripheral Artery Disease. BioMed Research International,
  142. Compagna R., Amato B., Massa S. et al. Cell Therapy in Patients with Critical Limb Ischemia. Review Article. Stem Cells International, http://
  143. Nishioka K., Hidaka T., Kihara Y. et al. Autologous bone-marrow mononuclear cell implantation reduces longterm major amputation risk in patients with critical limb ischemia: a comparison of atherosclerotic peripheral arterial disease and Buerger disease. Circ. Cardiovasc. Interv. 2011; 4: 15-25.
  144. Saigawa T., Kato K., Ozawa T. et al. Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells. Circ. J. 2004; 68: 1189-93.
  145. Vasa M., Fichtlscherer S., Aicher A. et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ. Res. 2001; 89: E1-7.
  146. Heeschen C., Lehmann R., Honold J. et al. Profoundly reduced neovascular-ization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 2004; 109: 1615-22.
  147. Dimmeler S., Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ. Res. 2008; 102: 1319-30.
  148. Heiss C., Keymel S., Niesler U. et al. Impaired progenitor cell activity in age-related endothelial dysfunction. J. Am. Coll. Cardiol. 2005; 45: 1441-8.
  149. Mamidi M.K., Pal R., Dey S. et al. Cell therapy in critical limb ischemia: current developments and future progress. Cytotherapy 2012; 14: 902.
  150. Sprengers R.W., Verhaar M.C., Moll F.L. Growth factor and cell therapy in patients with critical limb ischemia. In: Bosiers M., Schneider P., editors. Critical limb ischemia. New York: Informa Healthcare USA Inc.; 2009. p. 302-20.
  151. Hozo S.P., Djulbegovic B., Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005; 5: 13.
  152. Conte M.S. Understanding objective performance goals for critical limb ischemia trials. Semin. Vasc. Surg. 2010; 23: 129-37.

Copyright (c) 2018 Eco-Vector

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 85657 от 21.07.2023 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies