Role of the different signal transduction systems on intervertebral disk degeneration



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review systematized the modern data reported about signaling system role in the intervertebral disk degeneration, that is one of the main reasons for back pain and patients' disability as a result. We represented current data revealing molecular-cell mechanisms of disk degeneration. The experimental data analysis of the cytokines and biologic active molecules influencing on the intervertebral disk degenerative diseases development is presented. We denoted actual, still remaining unsolved questions concerning treatment of the diseases that required further experimental studies with opportunity for clinical translation.

Full Text

Restricted Access

About the authors

V. A Byvaltsev

Irkutsk State Medical University; Irkutsk Railway Clinical Hospital; Scientific Center of Reconstructive and Restorative Surgery; Irkutsk State Medical Academy of Postgraduate Education

Email: byval75_vadim@yandex.ru

N. E Garashchenko

Irkutsk State Medical University; Irkutsk National Research Technical University

I. A Stepanov

Irkutsk State Medical University

N. T Aldiyarova

Republican Center of Health Development, Astana

References

  1. Honglei Ren M.D., Hu Z. SIRT1 inhibits the catabolic effect of IL-1 ß through TLR2/SIRT1/NF-kB pathway in human degenerative nucleus pulposus cells. Pain physician 2016; 19: E215-26.
  2. Baxter A., Erskine H., Ferrari A. et al. Disability-adjusted life years tDALYs) for 291 diseases and injuries in 21 regions, 1990- 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2013; 380(9859): 2197-223.
  3. Maidhof R., Alipui D.O., Rafiuddin A. et al. Emerging trends in biological therapy for intervertebral disc degeneration. Discov. Med. 2012; 14(79): 401-11.
  4. Qin C., Zhang B., Zhang L. et al. MyD88-dependent Toll-like receptor 4 signal pathway in intervertebral disc degeneration. Exp. Ther. Med. 2016; 12(2): 611-8.
  5. Wang Z., Fu C., Chen Y. et al. FoxC2 Enhances BMP7-mediated anabolism in nucleus pulposus cells of the intervertebral disc. PloS One 2016; 11(1): e0147764.
  6. Hwang P.Y., Chen J., Jing L. et al. The role of extracellular matrix elasticity and composition in regulating the nucleus pulposus cell phenotype in the intervertebral disc: a narrative review. J. Biomech. Eng. 2014; 136(2): 021010.
  7. Wang S.Z., Rui Y.F., Lu J. et al. Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies. Cell Prolif. 2014; 47(5): 381-90.
  8. Деев Р.В. Новые направления в реконструкции межпозвонковых дисков - клеточная трансплантация и тканевой инженерия. Гены и клетки 2005; 2: 48-50.
  9. Liu Z.H., Huo J.L., Wu Z.G. et al. RASSF7 expression and its regulatory roles on apoptosis in human intervertebral disc degeneration. Int. J. Clin. Exp. Pathol. 2015; 8(12): 16097.
  10. Бардонова Л.А., Белых Е.Г., Степанов И.А. и др. Роль матричных металлопротеиназ и провоспалительных цитокинов в регенерации межпозвонкового диска. Тихоокеанский медицинский журнал 2015; 4: 21-5.
  11. Nasto L.A., Seo H.Y., Robinson A.R. et al. ISSLS prize winner: inhibition of NF-kB activity ameliorates age-associated disc degeneration in a mouse model of accelerated aging. Spine (Phila Pa 1976) 2012; 37(21); 1819.
  12. Hughes S.P.F., Freemont A.J., Hukins D.W. et al. The pathogenesis of degeneration of the intervertebral disc and emerging therapies in the management of back pain. J. Bone Joint Surg. Br. 2012; 94(10): 1298-304.
  13. Takatalo J., Karppinen J., Niinimäki J. et al. Association of modic changes, Schmorl's nodes, spondylolytic defects, high-intensity zone lesions, disc herniations, and radial tears with low back symptom severity among young Finnish adults. Spine (Phila Pa 1976) 2012; 37(14): 1231-9.
  14. Samartzis D., Karppinen J., Cheung J.P. et al. Disk degeneration and low back pain: are they fat-related conditions? Global Spine J. 2013; 3(3): 133-44.
  15. Samartzis D., Karppinen J., Mok F. et al. The association of lumbar intervertebral disc degeneration on magnetic resonance imaging with body mass index in overweight and obese adults: A population-based study. Arthritis Rheumatol. 2012; 64(5): 1488-96.
  16. Samartzis D., Ito K., Wang J.C. Disk degeneration and pain. Global Spine J. 2013; 3(3): 125-6.
  17. Yang H., Yuan C., Wu C. et al. The role of TGF-ß1/Smad2/3 pathway in platelet-rich plasma in retarding intervertebral disc degeneration. J. Cell. Mol. Med. 2016; 20(8): 1542-9.
  18. Molinos M., Almeida C.R., Caldeira J. et al. Inflammation in intervertebral disc degeneration and regeneration. Journal of the Royal Society Interface 2015; 12(104): 20141191.
  19. Бывальцев В.А., Степанов И.А., Бардонова Л.А. и др. Использование стволовых клеток в терапии дегенерации межпозвонкового диска. Вестник РАМН 2016; 71(5): 359-66.
  20. Pientka F.K., Hu J., Schindler S.G. et al. Oxygen sensing by the prolyl-4-hydroxylase PHD2 within the nuclear compartment and the influence of compartmentalisation on HIF-1 signalling. J. Cell Sci. 2012; 125(21): 5168-76.
  21. Mern D.S., Fontana J., Beierfuß A. et al. A combinatorial relative mass value evaluation of endogenous bioactive proteins in three-dimensional cultured nucleus pulposus cells of herniated intervertebral discs: identification of potential target proteins for gene therapeutic approaches. PLoS One 2013; 8(11): e81467.
  22. Mern D.S., Beierfuß A., Fontana J. et al. Imbalanced protein expression patterns of anabolic, catabolic, anti-catabolic and inflammatory cytokines in degenerative cervical disc cells: new indications for gene therapeutic treatments of cervical disc diseases. PloS One 2014; 9(5): e96870.
  23. Li J.K., Nie L., Zhao Y.P. et al. IL-17 mediates inflammatory reactions via p38/c-Fos and JNK/c-Jun activation in an AP-1-dependent manner in human nucleus pulposus cells. J. Transl. Med. 2016; 14(1): 77.
  24. Zhang W., Nie L., Wang Y. et al. CCL20 secretion from the nucleus pulposus improves the recruitment of CCR6-expressing Th17 cells to degenerated IVD tissues. PloS One 2013; 8(6): e66286.
  25. Crome S.Q., Wang A.Y., Levings M.K. Translational Mini-Review Series on Th17 Cells: Function and regulation of human T helper 17 cells in health and disease. Clin. Exp. Immunol. 2010; 159(2): 109-19.
  26. Zhang W., Nie L., Guo Y.J. et al. Th17 cell frequency and IL-17 concentration correlate with pre-and postoperative pain sensation in patients with intervertebral disk degeneration. Orthopedics 2014; 37(7): e685-91.
  27. Cheng L., Fan W., Liu B. et al. Th17 lymphocyte levels are higher in patients with ruptured than non-ruptured lumbar discs, and are correlated with pain intensity. Injury 2013; 44(12): 1805-10.
  28. Yokoyama K., Hiyama A., Arai F. et al. C-Fos regulation by the MAPK and PKC pathways in intervertebral disc cells. PloS One 2013; 8(9): e73210.
  29. Moon M.H., Jeong J.K., Lee Y.J. et al. SIRT1, a class III histone deacetylase, regulates TNF-a-induced inflammation in human chondrocytes. Osteoarthritis Cartilage 2013; 21(3): 470-80.
  30. Hiyama A., Yokoyama K., Nukaga T. et al. Response to tumor necrosis factor-a mediated inflammation involving activation of prostaglandin E2 and Wnt signaling in nucleus pulposus cells. J. Orthop. Res. 2015; 33(12): 1756-68.
  31. Wang X.H., Hong X., Zhu L. et al. Tumor necrosis factor alpha promotes the proliferation of human nucleus pulposus cells via nuclear factor-кВ, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase. Exp. Biol. Med. [Maywood) 2015; 240(4): 411-7.
  32. Wang H., Tian Y., Wang J. et al. Inflammatory cytokines induce notch signaling in nucleus pulposus cells implications in intervertebral disc degeneration. J. Biol. Chem. 2013; 288(23): 16761-74.
  33. Takahashi S., Ebihara A., Kajiho H. et al. RASSF7 negatively regulates pro-apoptotic JNK signaling by inhibiting the activity of phosphorylated-MKK7. Cell Death Differ. 2011; 18(4): 645-55.
  34. Than K.D., Rahman S.U., Vanaman M.J. et al. Bone morphogenetic proteins and degenerative disk disease. Neurosurgery 2012; 70(4): 996-1002.
  35. Zieba J., Forlenza K.N., Khatra J.S. et al. TGFß and BMP dependent cell fate changes due to loss of Filamin B produces disc degeneration and progressive vertebral fusions. PLoS Genet. 2016; 12(3): e1005936.
  36. Zhongyi S., Sai Z., Chao L. et al. Effects of nuclear factor kappa B signaling pathway in human intervertebral disc degeneration. Spine (Phila Pa 1976) 2015; 40(4): 224-32.
  37. Fujita N., Chiba K., Shapiro I.M. et al. HIF-1a and HIF-2a degradation is differentially regulated in nucleus pulposus cells of the intervertebral disc. J. Bone Miner. Res. 2012; 27(2): 401-12.
  38. Fujita N., Markova D., Anderson D.G. et al. Expression of Prolyl hydroxylases (PHDs) is selectively controlled by HIF-1 and HIF-2 proteins in nucleus pulposus cells of the intervertebral disc distinct roles of PHD2 and PHD3 proteins in controlling HIF-1 a activity in hypoxia. J. Biol. Chem. 2012; 287(20): 16975-86.
  39. Keely S., Campbell E.L., Baird A.W. et al. Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. Mucosal Immunol. 2014; 7(1): 114-23.
  40. Бывальцев В.А., Белых Е.Г., Степанов И.А. и др. Цитокиновые механизмы дегенерации межпозвонкового диска. Сибирский медицинский журнал (Иркутск) 2015;137(6): 5-11.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies