Delivery Cas9 into mitochondria



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Технологии направленного редактирования ядерного генома активно и успешно используются в лабораториях по всему миру. Нуклеазы на основе доменов типа «цинковые пальцы» (ZFN) и нуклеазы на основе эффекторных TAL-белков (TALENs) уже адаптированы для внесения двухцепочечных разрывов в митохондриальной ДНК (мтДНК). Появившаяся недавно более эффективная и универсальная технология CRISPR\Cas9 находится на начальном этапе её адаптации для мтДНК. Цель настоящей работы - модификация нуклеазы Cas9, одной из составляющих функциональных частей системы CRISPR\Cas9, для специфического импорта во внутримитохондриальное пространство. Адаптация второго компонента системы - направляющей РНК, позволяющая осуществлять ее специфическую доставку в митохондрии, даст возможность использовать данную систему для направленной деградации мтДНК содержащей мутации, а в перспективе позволит разработать подходы для её редактирования.

Full Text

Restricted Access

About the authors

K. E Orishchenko

Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences; Kant Baltic Federal University

Email: OrishchenkoKE@icg.sbras.ru
Novosibirsk, Russia; Kaliningrad, Russia

J. K Sofronova

Kant Baltic Federal University

Kaliningrad, Russia

E. G Chupakhin

Kant Baltic Federal University

Kaliningrad, Russia

E. A Lunev

Kant Baltic Federal University

Kaliningrad, Russia

I. O Mazunin

Kant Baltic Federal University

Kaliningrad, Russia

References

  1. Schaefer A.M., McFarland R., Blakely E.L. et al. Prevalence of mitochondrial DNA disease in adults. Ann. Neurol. 2008; 63: 35-9.
  2. DiMauro S., Schon E.A., Carelli V. et al. The clinical maze of mitochondrial neurology. Nat. Rev. Neurol. 2013; 9: 429-44.
  3. Schon E.A., DiMauro S., Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 2012; 13: 878-90.
  4. Sander J.D., Joung J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014; 32: 347-55.
  5. Harrison M.M., Jenkins B.V., 0'Connor-Giles K.M. et al. CRISPR view of development. Genes Dev. 2014; 28: 1859-72.
  6. Gammage P.A., Rorbach J., Vincent A.I. et al. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMB0 Mol. Med. 2014; 6: 458-66.
  7. Bacman S.R., Williams S.L., Pinto M. et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 2013; 19: 1111-3.
  8. Yang L., Guell M., Byrne S. et al. 0ptimization of scarless human stem cell genome editing. Nucleic Acids Res. 2013; 41: 9049-61.
  9. Sieber F., Duchene A.M., Marechal-Drouard L. Mitochondrial RNA import: from diversity of natural mechanisms to potential applications. Int. Rev. Cell Mol. Biol. 2011; 287: 145-90.
  10. Mali P., Yang L., Esvelt K.M. et al. RNA-guided human genome engineering via Cas9. Science 2013; 339: 823-6.
  11. Kaltimbacher V., Bonnet C., Lecoeuvre G. et al. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA 2006; 12: 1408-17.
  12. Neupert W., Herrmann J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007; 76: 723-49.
  13. Fink M., Flekna G., Ludwig A. et al. Improved translation efficiency of injected mRNA during early embryonic development. Dev. Dyn. 2006; 235: 3370-8.
  14. Wang G., Chen H.W., 0ktay Y. et al. PNPASE regulates RNA import into mitochondria. Cell 2010; 142: 456-67.
  15. Wang G., Shimada E., Koehler C.M. et al. PNPASE and RNA trafficking into mitochondria. Biochim. Biophys. Acta 2012; 1819: 998-1007.
  16. Tonin Y., Heckel A.M., Dovydenko I. et al. Characterization of chemically modified oligonucleotides targeting a pathogenic mutation in human mitochondrial DNA. Biochimie 2014; 100: 192-9.
  17. Tonin Y., Heckel A.M., Vysokikh M. et al. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J. Biol. Chem. 2014; 289: 13323-34.
  18. Ran F.A., Cong L., Yan W.X. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520: 186-91.
  19. Zetsche B., Gootenberg J.S., Abudayyeh O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163: 759-71.
  20. Shmakov S., Abudayyeh O.O., Makarova K.S. et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Moll. Cell 2015; 60: 385-97.
  21. Jo A., Ham S., Lee G.H. et al. Efficient Mitochondrial Genome Editing by CRISPR/Cas9. Biomed. Res. Int. 2015; 2015: 305716.
  22. Ran F.A., Hsu P.D., Wright J. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013; 8: 2281-308.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies