Soluble and immobilized papain and trypsin as destroyers of bacterial biofilms

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The proteolytic enzymes are widely used in medicine as a wound healing agents, removing necrotic tissues and serving as an alternative to surgery. The ability of soluble and immobilized papain and trypsin to destroy bacterial biofilm was investigated. We show that treatment with papain leads to disruption of biofilms formed by Pseudomonas aerugenosa, Escherichia coli, Micrococcus luteus, and in a lesser extent of Staphylococcus aureus and Staphylococcus epidermidis. It is shown that none of the investigated enzymes has mutagenicity and cytotoxicity, and causes no increase in the amount of necrotic cells in culture in vitro

Full Text

Restricted Access

About the authors

E. Yu Trizna

Email: trizna91@mail.ru
Kazan (Volga region) Federal University Kazan, Russia

D. R Baydamshina

Kazan (Volga region) Federal University Kazan, Russia

M. G Kholyavka

Voronezhsky State University Voronezh, Russia

I. S Sharafutdinov

Kazan (Volga region) Federal University Kazan, Russia

A. R Hairutdinova

Kazan (Volga region) Federal University Kazan, Russia

F. A Khafizova

Kazan (Volga region) Federal University Kazan, Russia

E. Yu Zakirova

Kazan (Volga region) Federal University Kazan, Russia

R. G Hafizov

Kazan (Volga region) Federal University Kazan, Russia

M. I Bogachev

A. R Kayumov

Kazan (Volga region) Federal University Kazan, Russia

References

  1. Janzekovic Z. A new concept in the early excision and immediate grafting of burns. J. Trauma 1970; 10: 1103-8.
  2. Klasen H.J. A review on the non-operative removal of necrotic tissue from burn wounds. Burns 2000; 26: 207-22.
  3. Thallinger B., Prasetyo E.N., Nyanhongo G.S. et al. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnol. J. 2013; 8: 97-109.
  4. Silverstein P., Maxwell P.L.D. Enzymatic débridement. In: Boswick J A, editor The art and science of burn care Rockville: Aspen Publishers; 1987. p. 75-81.
  5. McCarty S.M., Cochrane C.A., Clegg P.D. et al. The role of endogenous and exogenous enzymes in chronic wounds: A focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair and Regeneration 2012; 20(2): 125-36.
  6. McCallon S.K., Weir D., Lantis J.C. Optimizing wound bed preparation with collagenase enzymatic debridement J Am Coll Clin Wound. Spec. 2015; 6(1-2): 14-23.
  7. Sinclair R.D., Ryan T. J. Proteolytic enzymes in wound healing: the role of enzymatic debridement. Australas J. Dermatol. 1994; 35(1): 35-41.
  8. Alvarez O.M., Fernandez-Obregon A., Rogers R.S. et al. Chemical debridement of pressure ulcers: a prospective, randomized, comparative trial of collagenase, and papain-urea formulations Wounds. 2002; 14: 293-301.
  9. Gudmundsdottir Á., Hilmarsson H., Stefansson B. Potential Use of Atlantic Cod Trypsin in Biomedicine. Biomed. Res. Int. 2013; 749078: 1-11.
  10. Garcia-Galan C., Berenguer-Murcia Á., Fernandez-Lafuente R. et al. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011; 353: 2885-904.
  11. Sheldon R.A. Enzyme immobilization: The quest for optimum performance. Adv. Synthesis Catalysis. 2007; 349: 1289-307.
  12. Gorecka E., Jastrzebska M. Immobilization techniques and biopolymer carriers. Biotechnol. 2011; 75: 65-86.
  13. Mogoçanua G.D., Grumezescub A.M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharmaceutics 2014; 463(2): 127-36.
  14. Bezerra C.S., de Farias Lemos C.M.G., de Sousa M., Gonçalves L.R.B.J. Appl. Polym. Sci. 2015; 132:42125.
  15. Tang Z.X., Qian J. Q., Shi L.E. Characterizations of immobilized neutral proteinase on chitosan nano-particles Process Biochem 2006; 41: 1193-7.
  16. Younes I., Rinaudo M. Chitin and Chitosan Preparation from Marine Sources Structure, Properties and Applications Mar Drugs 2015; 13(3): 1133-74.
  17. Dai T., Tanaka M., Huang Y.Y. et al. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects Expert Rev. Anti-Infect. Ther. 2011; 9: 857-79.
  18. Oester D.A., Wochter R., Gates J.А. USA patent 6451773 МПК7: А OlN 43/04. 2002 Sept17.
  19. Игнатов Г.Г., Писаренко Л.В., Хрупкий В.И. Заживляющее средство. Патент РФ на изобр. №2271814. 20 марта 2006.
  20. Логинова О.О., Холявка М.Г., Артюхов В.Г. и др. Разработка методики получения гетерогенного биокатализатора на основе трипсина, иммобилизованного на матрице хитозана Фундаментальные исследования 2013; 11(3): 484-7.
  21. Сливкин А.И., Беленова А.С., Холявка М.Г. и др. Разработка биокатализатора на основе трипсина, иммобилизованного на хитозане Сорбционные и хроматографические процессы 2013; 13(1): 53-9.
  22. Логинова О.О., Холявка М.Г., Артюхов В.Г. Физико-химические и кинетические свойства гетерогенного биокатализатора на основе трипсина, иммобилизованного на матрице хитозана Биофармацевтический журнал 2015; 7(2): 13-6.
  23. Ames B.N., McCann J., Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 1971; 347-64.
  24. Oda Y., Nakamura S., Oki I. et al. Evaluation of the new system (umu-test) for the detectionof environmental mutagenes and carcinogens. Mutat. Res. 1985; 147: 219-29.
  25. Sambrook J., Fritsch E.F., Maniatis T., editors Molecular cloning A laboratory manual New York: Cold Spring Harbor Lab Press; 1989.
  26. Закирова Е.Ю., Журавлева М.Н., Масгутов Р.Ф. и др. Выделение, анализ и применение аутогенных мультипотентных мезенхимальных стромальных клеток жировой ткани собаки для лечения ложного сустава большеберцовой кости. Гены и Клетки 2014; 9(3): 70-5
  27. Miller J.H., editor Experiment in molecular genetics New York: Cold Spring Harbor Lab. Press; 1972.
  28. Fedorova K., Kayumov A., Woyda K. et al. Transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in Bacillus subtilis. FEBS Lett. 2013; 587: 1293-8.
  29. Liu K., Liu P.-C, Liu R. et al. Dual AO/EB Staining to Detect Apoptosis in Osteosarcoma Cells Compared with Flow Cytometry. Med. Sci. Monit. Basic Res. 2015; 21: 15-20.
  30. Elchinger P.H., Delattre C., Faure S. et al. Immobilization of proteases on chitosan for the development of films with anti-biofilm properties. Int. J. Biol. Macromol. 2015; 72: 1063-8.
  31. Harris L.G., Nigam Y., Sawyer J. et al. Lucilia sericata chymotrypsin disrupts protein adhesin-mediated staphylococcal biofilm formation. Appl. Environ. Microbiol. 2013; 79: 1393-5.
  32. Миргазизов М.З., Миргазизов А.М., Миргазизов Р.М. и др. Способ адресной доставки остеопластических материалов, содержащих факторы роста и регенерации костной ткани Патент РФ на изобр. №2469676. 31 мая 2011.
  33. Хафизов Р.Г., Миргазизов М.З., Гюнтер В.Э. и др. Пористая никелид-титановая мембрана для направленной тканевой регенерации. Патент РФ на полезную модель. №113147. 21 июня 2011.
  34. Langer V., Bhandari P.S., Mukherjee M.K. Enzymatic debridement of large burn wounds with papain-urea: Is it safe? Medical Journal Armed Forces India 2013; 69(2): 144-50.
  35. Sieggreen M., Maklebust J. Debridement: choices and challenges. Adv. Wound Care. 1997; 10: 32-7.
  36. Hall-Stoodley L., Costerton J.W., Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases Nat Rev. Microbiol. 2004; 2: 95-108.
  37. Percival S.L., Hill K.E., Williams D.W. et al. A review of the scientific evidence for biofilms in wounds Wound Repair Regen 2012; 20: 647-57

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies