Genetic and epigenetic mechanisms of sensory maps development



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

One of the central questions of neurobiology is to understand how during development billions of neurons establish synaptic connections, and what are the roles of genes and activity in the formation of specific neuronal circuits . There are two main theoretical models to describe this developmental process . The model of “tabula rasa” implies that initially there is no order in synaptic connections, and that their initial exuberant number undergoes pruning through the competition of neurons for their targets . Alternative model assumes that development of synaptic connections is strictly determined by genes, through signaling molecules that predefine highly ordered connectivity, and that the activity only plays confirmative roles . In the present review, we describe genetic and epigenetic factors involved in the development of sensory maps in barrel cortex and provide evidence that both mechanisms operate in the development of this system . While genetic mechanisms provide course topography of somatosensory map at subcolumnar precision level in its initial state, sensory-driven activity patterns, which are is expressed in barrel cortex during the critical developmental period support competition between sensory inputs (neighbor whiskers) for the cortical territories to achieve columnar level of precision in somatosensory map by the end of the critical period

Full Text

Restricted Access

About the authors

O. Mitrukhina

Mediterranean Institute of Neurobiology INSERM U901 - INMED, Kazan (Volga Region) Federal University, Aix-Marseille University Marseille, France Kazan, Russia

M. Minlebaev

Mediterranean Institute of Neurobiology INSERM U901 - INMED, Kazan (Volga Region) Federal University, Aix-Marseille University Marseille, France Kazan, Russia

R. Khazipov

Email: Roustem.khazipov@inserm.fr
Mediterranean Institute of Neurobiology INSERM U901 - INMED, Kazan (Volga Region) Federal University, Aix-Marseille University Marseille, France Kazan, Russia

References

  1. Woolsey T. A., Van der Loos H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 1970; 17: 205-42.
  2. Petersen C. C. The functional organization of the barrel cortex. Neuron 2007; 56: 339-55.
  3. Erzurumlu R. S., Gaspar P. Development and critical period plasticity of the barrel cortex. Eur. J. Neurosci. 2012; 35: 1540-53.
  4. Price D.J., Kennedy H., Dehay C. et al. The development of cortical connections. Eur. J. Neurosci. 2006; 23: 910-20.
  5. Fox K., Schlaggar B. L., Glazewski S., O'Leary D. D. Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. PNAS USA 1996; 93: 5584-9.
  6. Mitrovic N., Mohajeri H., Schachner M. Effects of NMDA receptor blockade in the developing rat somatosensory cortex on the expression of the glia-derived extracellular matrix glycoprotein tenascin-C. Eur. J. Neurosci. 1996; 8: 1793-802.
  7. Iwasato T., Datwani A., Wolf A. M. et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 2000; 406: 726-31
  8. Lee L.J., Iwasato T., Itohara S., Erzurumlu R. S. Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. J. Comparative Neurol. 2005; 485: 280-92.
  9. Cases O., Vitalis T., Seif I. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase a-deficient mice: role of a serotonin excess during the critical period. Neuron 1996; 16: 297-307
  10. Toda T., Homma D., Tokuoka H. et al. Birth regulates the initiation of sensory map formation through serotonin signaling. Dev. Cell. 2013; 27: 32-46.
  11. van Kleef E. S., Gaspar P., Bonnin A. Insights into the complex influence of 5-HT signaling on thalamocortical axonal system development. Eur. J. Neurosci. 2012; 35: 1563-72.
  12. Narboux-Neme N., Evrard A., Ferezou I. et al. Neurotransmitter release at the thalamocortical synapse instructs barrel formation but not axon patterning in the somatosensory cortex. J. Neurosci. 2012; 32: 6183-96.
  13. Wu C. S., Ballester Rosado C. J., Lu,H. C. What can we get from 'barrels': the rodent barrel cortex as a model for studying the establishment of neural circuits. Eur. J. Neurosci. 2011; 34: 1663-76
  14. Van der Loos H., Woolsey T.A. Somatosensory cortex: structural alterations following early injury to sense organs. Science 1973; 179: 395-8.
  15. Fox K. A critical period for experience-dependent synaptic plasticity in rat barrel cortex. J. Neurosci. 1992; 12: 1826-38.
  16. Yang J.W., An S., Sun J. J. et al. Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. Cereb. Cortex. 2013; 23: 1299-316.
  17. Mitrukhina O., Suchkov D., Khazipov R., Minlebaev M. Imprecise whisker map in the neonatal rat barrel cortex. Cereb. Cortex. 2015; 25: 3458-67.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies