Tissue engineering in vascular surgery

Cite item


Tissue engineering is a complex biomedical and technological system of knowledge allowing to make and investigate the artificial tissues and organs. Prevalence of vascular diseases and demand of bypass material in vascular surgery led to a lot of researches, with the ultimate aim to create an artificial artery or vein. This article is dedicated to review the main possible methods of artificial vessel manufacturing, some of which already have been used in a clinic.

Full Text

Restricted Access

About the authors

G. I Popov

The First I.P. Pavlov State Medical University

Saint-Petersburg, Russia

V. N Vavilov

Peter the Great Saint-Petersburg Polytechnic University

Saint-Petersburg, Russia


  1. Бокерия Л.А., Гудкова Р.Г. Успехи и нерешенные вопросы сердечно-сосудистой хирургии в России. В: Бюллетень НЦССХ им. А.Н. Бакулева РАМН. Материалы XYIII Всероссийского Съезда сердечно-сосудистых хирургов; 2012 25-28 ноября; Москва, Россия; 2012. 13 (6): p. 7.
  2. Alan S., Mozaffarian D., Roger V.L. et al. Heart disease and stroke statistics - association 2013 update: a report from the American heart association. Circulation 2013; 127: e6-e245.
  3. Бикбов Б.Т. Томилина Н.А. Состояние заместительной терапии больных с хронической почечной недостаточностью в Российской Федерации в 1998-2009 гг. [Отчет по данным Российского регистра заместительной почечной терапии). Нефрология и диализ 2011; 13(3): 150-264.
  4. Thomas A.C., Campbell G.R., Campbell J.H. Advances in vascular tissue engineering. Cardiovascular Pathology 2003; 12: 271-6.
  5. L'Heureux N., Paquet N., Labbe R. et al. A completely biological tissue-engineered human blood vessel. FASEB J. 1998; 12: 47-9.
  6. Konig G., McAllister T.N., L'Heureux N. et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 2009; 30: 1542-50.
  7. L'Heureux N., Paquet S., Labbe R. et al. A completely biological tissue-engineered human blood vessel. FASEB J. 1998; 12(1): 47-9.
  8. L'Heureux N., Dusserre N., Konig G. et al. Human tissue-engineered blood vessels for adult arterial revascularization. J. Nat. Med. 2006; 12(3): 361-5.
  9. McAllister T.N., Maruszewski M., Garrido S. A. et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 2009; 373: 1440-6.
  10. L'Heureux N., Dusserre N., Marini A. et al. Technology Insight: the evolution of tissue-engineered vascular grafts-from research to clinical practice. Nat. Clin. Pract. Cardiovasc. Med. 2007; 4: 389-6.
  11. Zhao J., Liu L., Wei J. et al. A novel strategy to engineer small-diameter vascular grafts from marrow-derived mesenchymal stem cells. Artif. Organs 2012; 36 (I): 93-101.
  12. Larsen C.C., Kligman F., Tang C. et al. A biomimetic peptide fluorosurfactant polymer for endothelialization of ePTFE with limited platelet adhesion. Biomaterials 2007; 28(24): 3537-48.
  13. Peck M.K., Dusserre N., Zagalski K. et al. New biological solutions for hemodialysis access. J. Vasc. Acc. 2011; 12(3): 185-92.
  14. Gilberta T.W., Sellaro T.L., Badylak S.F. Decellularization of tissues and organs. Biomaterials 2006; 27: 3675-8.
  15. Ахмедов Ш.Д. Использование бесклеточного коллагенового матрикса в качестве платформы для изготовления кровеносных сосудов в сердечно-сосудистой хирургии. Ангиология и сосудистая хирургия 2012; 18(11): 7-12.
  16. Schaner P.J., Martin N.D., Tulenko T.N. et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J. Vasc. Surg. 2004; 40(1): 146-53.
  17. Насрединов А.С., Лаврешин А.В., Анисимов С.В. и др. Децеллюляризированные артерии пуповины человека как основа тканеинженерных кровеносных сосудов малого калибра. Клеточная трансплантология и тканевая инженерия 2013; YIII(1): 66-71.
  18. Dahl S.L., Kypson A.P., Lawson J.H. et al. Readily available tissue-engineered vascular grafts. Sci. Transl. Med. 2011; 3(68): 689.
  19. Chemla E.S., Morsy M. Randomized clinical trial comparing decellularized bovine ureter with expanded polytetrafluoroethylene for vascular access. Brit. J. Surg. 2009; 96: 34-5.
  20. Olausson M., Patil P.B., Kuna V.K. et al. Transplantation of an allogenic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet 2012; 380: 230-7.
  21. Sparks C.H. Autogenous grafts made to order. Ann. Thorac. Surg. 1969; 8: 104-13.
  22. Sparks C.H. Silicone mandril method of femoropopliteal artery bypass. Clinical experience and surgical techniques. Am. J. Surg. 1972; 124: 244-5.
  23. Sparks C.H. Silicone mandril method for growing reinforced autogenous femoro-popliteal artery grafts in situ. Ann. Surg. 1973; 177: 293-7.
  24. Guidoin R., Thevenet A., Noel H.P. et al. The Sparks-Mandril arterial prosthesis: an ingenious concept, a total failure. What can we learn from it? J. Malad. Vascul. 1984; 9: 277-83.
  25. Kretschmer G., Polterauer P., Wagner O. et al. Sparks grafts as arterial substitutes in the femoro-popliteal region with a postoperative follow-up of up to 54 months. Helvet. Chirurg. Act. 1981; 48: 243-7.
  26. Campbell J.H., Efendy J.L., Han C.L. et al. Haemopoietic origin of myofibroblasts formed in the peritoneal cavity in response to a foreign body. J. Vasc. Res. 2000; 37: 364-7.
  27. Campbell G.R., Ryan G.B. Origin of myofibroblasts in the avascular capsule around free-floating intraperitoneal blood clots. Pathology 1983; 15: 253-64.
  28. Verhagen H.J., Heijnen-Snyder G.J., Pronk A. et al. Thrombomodulin activity on mesothelial cells: perspectives for mesothelial cells as an alternative for endothelial cells for cell seeding on vascular grafts. Brit. J. Haematol. 1996; 95: 542-7.
  29. Campbell J.H., Efendy J.L., Campbell G.R. Novel vascular graft grown within recipient's own peritoneal cavity. Circ. Res. 1999; 85: 1173-8.
  30. Chue W.L., Campbell G.R., Caplice N. et al. The dog peritoneal and pleural cavities as bioreactors to grow autologous artificial blood vessels. J. Vasc. Surg. 2004; 39(4): 859-67.
  31. George S.J., Lloyd C.T., Angelini G.D. et al. Inhibition of late vein graft neointima formation in human and porcine models by adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-3. Circulation 2000; 101: 296-8.
  32. Weinberg C.B., Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science 1986; 231: 397-3.
  33. Matsuda T., Miwa H. A hybrid vascular model biomimicking the hierarchic struc-ture of arterial wall: neointimal stability and neoarterial regeneration process under arte-rial circulation. J. Thorac. Cardiovasc. Surg. 1995; 110: 988-97.
  34. Swartz D.D., Russell J.A., Andreadis S.T. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am. J. Physiol. Heart Circ. Physiol. 2005; 288(3): H1451-60.
  35. Tschoeke B., Flanagan T.C., Koch S. et al. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin-polylactide scaffold. Tiss. Engin. Part A 2009; 15: 1909-18.
  36. Koch S., Flanagan T.C., Sachweh J.S. et al. Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 2010; 31: 4731-9.
  37. Isenberg B.C., Williams C., Tranquillo R.T. Small-diameter artificial arteries en-gineered in vitro. Circ. Res. 2006; 98: 25-35.
  38. Syedain Z.H., Meier L.A., Bjork J.W. et al. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 2011; 32: 714-22.
  39. Hu J., Sun X., Ma H. et al. Porous nanofibrous PLLA scaffolds for vascular tissue engineering. Biomaterials 2010; 31(31): 7971-7.
  40. Mooney D.J., Mazzoni C.L., Breuer C. et al. Stabilized polyglycol-ic acid fibre-based tubes for tissue engineering. Biomaterials 1996; 17: 115-24.
  41. Opitz F., Schenke-Layland K., Cohnert T.U. et al. Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc. Res. 2004; 63: 719-30
  42. Shum-Tim D., Stock U., Hrkach J. et al. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann. Thorac. Surg. 1999; 68: 2298-304
  43. Zilla P., Deutsch M., Meinhart J. Endothelial cell transplantation. Seminars Vasc. Surg. 1999; 12: 52-63.
  44. Bellon J.M., Garcia-Honduvilla N., Escudero C. et al. Mesothelial versus endothelial cell seeding: evaluation of cell adherence to a fibroblastic matrix using 111In oxine. Euro. J. Vasc. Endovasc. Surg. 1997; 13: 142-8.
  45. Fox D., Vorp D.A., Greisler H.P. Bioresorbable grafts: a counterintuitive approach. In: Zilla P., Greisler H.P., editors. Tissue engineering of vascular prosthetic grafts. Austin, TX, USA: R. G. Landes; 1999. p. 489-503.
  46. Niklason L.E., Gao J., Abbott W.M. et al. Functional arteries grown in vitro. Science 1999; 284: 489-93M.
  47. McKee J.A., Banik S.S., Boyer M.J. et al. Human arteries engineered in vitro. EMBO Reports 2003; 4: 633-8
  48. Poh M., Boyer M., Solan A. et al. Blood vessels engineered from human cells. Lancet 2005; 365: 2122-4.
  49. Kaushal S., Amiel G.E., Guleserian K.J. et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med. 2001; 7: 1035-40.
  50. Kadner A., Heorstrup S.P., Zund G. et al. A new source for cardiovascular tissue engineering: Human bone marrow stromal cells. Euro. J. Cardio-Thorac. Surg. 2002; 21: 1055-60.
  51. Hoerstrup S.P., Kadner A., Melnitchouk S. et al. Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation 2002; 106: I143-50.
  52. Gong Z., Niklason L.E. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J. 2008; 22: 1635-48.
  53. Gong Z., Niklason L.E. Use of human mesenchymal stem cells as alternative source of smooth muscle cells in vessel engineering. Meth. Mol. Biol. 2011; 698: 279-94.
  54. Shannon L. M. Dahl, Kypson Alan P. et al. Readily Available Tissue-Engineered Vascular Grafts. Sci. Transl. Med. 2011; 3(68): 68ra9.
  55. Fox D., Vorp D.A., Greisler H.P. Bioresorbable grafts: s counterintuitive approach. In: Zilla, P., Greisler H.P., editors. Tissue engineering of vascular prosthetic grafts. Austin, TX, USA: R. G. Landes; 1999. p. 489-503.
  56. Torikai K., Ichikawa H., Hirakawa K. et al. A self-renewing, tissue-engineered vascular graft for arterial reconstruction. J. Thorac. Cardiovasc. Surg. 2008; 136: 37-45.
  57. Zavan B., Vindigni V., Lepidi S. et al. Neoarteries grown in vivo using a tissue-engineered hyaluronan-based scaffold. FASEB J. 2008; 22: 2853-61.
  58. Yokota T., Ichikawa H., Matsumiya G. et al. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. J. Thorac. Cardiovasc. Surg. 2008; 136: 900-7.
  59. Shinoka T., Shum-Tim D., Ma P.X. et al. Creation of viable pulmonary artery autografts through tissue engineering. J. Thorac. Cardiovasc. Surg. 1998; 115: 536-45; discussion 545-6.
  60. Shinoka T., Breuer C.K., Tanel R.E. et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 1995; 60: S513-6.
  61. Shinoka T., Ma P.X., Shum-Tim D. et al. Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 1996; 94(9 Supp l): II 164-8.
  62. Shinoka T., Shum-Tim D., Ma P.X. et al. Tissue-engineered heart valve leaflets: does cell origin affect outcome? Circulation 1997; 96(9 Supp l): II 102-7.
  63. Watanabe M., Shin'oka T., Tohyama S. et al. Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tiss. Engin. 2001; 7: 429-39.
  64. Breuer C.K., Shin'oka T., Tanel R.E. et al. Tissue engineering lamb heart valve leaflets. Biotech. Bioengin. 1996; 50: 562-7.
  65. Shin'oka T., Imai Y., Ikada Y. Transplantation of a tissue-engineered pulmonary artery. New Engl. J. Med. 2001; 344: 532-3.
  66. Narutoshi H., Naito Y., Breuer C., Shinoka T. et al. Late-term results of tissue-engineered vascular grafts in humans. J. Thorac. Cardiovasc. Surg. 2010; 139: 431-6.

Copyright (c) 2014 PJSC Human Stem Cells Institute

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies