Molecular and genetic features of calpainopathy

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Calpainopathy is the most common form of limb-girdle muscular dystrophy, prevalence in the population is approximately 1 in 15,000–42,700 individuals. In the Russian Federation, there is an insufficient number of studies, which researched prevalence of calpainopathy among patients with limb-girdle muscular dystrophy, but according to available data, approximately in 43% of cases the disease is associated with mutations of the CAPN3 gene. Molecular genetic analysis is the main method for diagnosing these patients. Studies indicate many pathogenic mutations that cause calpainopathy with corresponding phenotypes, however, it is quite difficult to establish clear correlations between genotype and phenotype due to the high variability of symptoms and severity, even among patients with the same CAPN3 gene mutations. Currently, there is no effective etiotropic treatment for limb-girdle muscular dystrophy, but new technologies are developing to improve patients’ condition and quality of life. This research collects data from various studies on the prevalence of calpainopathy in different countries and the main molecular genetic features of the CAPN3 gene and calpain-3 protein, which will further allow the development of possible treatment options for patients with limb–girdle muscular dystrophy.

Full Text

Restricted Access

About the authors

L. A. Mkrtchyan

I.I. Mechnikov North-Western State Medical University; LLC “Genotarget”

Author for correspondence.
Email: lilitmkrtch@yandex.ru
Russian Federation, St. Petersburg; Moscow

Y. S. Slesarenko

LLC “Genotarget”; “Human Stem Cells Institute”

Email: lilitmkrtch@yandex.ru
Russian Federation, Moscow; Moscow

I. A. Yakovlev

LLC “Genotarget”; “Human Stem Cells Institute”

Email: lilitmkrtch@yandex.ru
Russian Federation, Moscow; Moscow

S. N. Bardakov

S.M. Kirov Military Medical Academy

Email: lilitmkrtch@yandex.ru
Russian Federation, St. Petersburg

R. V. Deev

I.I. Mechnikov North-Western State Medical University; LLC “Genotarget”; “Human Stem Cells Institute”

Email: lilitmkrtch@yandex.ru
Russian Federation, St. Petersburg; Moscow; Moscow

References

  1. Bertini E., D'Amico A., Gualandi F. et al. Congenital muscular dystrophies: a brief review. Semin. Pediatr. Neurol. 2011; 18(4): 277–88.
  2. Ono Y., Ojima K., Shinkai-Ouchi F. et al. An eccentric calpain, CAPN3/p94/calpain-3. Biochimie 2016; 122: 169–87.
  3. Гришина Д.А., Супонева Н.А., Шведков В.В. и соавт. Наследственная прогрессирующая конечностно-поясная мышечная дистрофия 2а типа (кальпаинопатия): обзор литературы. Нервно-мышечные болезни 2015; 5(1): 25–36 [Grishina D.A., Suponeva N.A., Shvedkov V.V. et al. Inherited progressive limb-girdle muscular dystrophy type 2A (calpainopathy): a review of literature. Neuromuscular Diseases 2015; 5(1): 25–36].
  4. Рыжкова О.П. Клинико-молекулярно-генетический анализ изолированных поясно-конечностных мышечных дистрофий, являющихся ферментопатиями. Автореф. дис. канд. мед. наук. Москва: Медико-генетический научный центр им. академика Н.П. Бочкова. 2011: 28 [Ryzhkova O.P. Clinical and molecular-genetic analysis of isolated limb-girdle muscular dystrophy, which fermentopathia. Abstract of the dissertation of a cand. of med. sciences. Moscow: Academician N.P. Bochkov Medical and Genetic Research Center. 2011: 28].
  5. Дадали Е.Л., Щагина О.А., Рыжкова О.П. и соавт. Клинико-генетические характеристики поясно-конечностной мышечной дистрофии 2А типа. Журнал неврологии и психиатрии 2010; 110(4): 79–83 [Dadali E.L., Shchagina O.A., Ryzhkova O.P. et al. Clinical-genetic characteristics of limb girdle-muscular dystrophy type 2A. Journal of Neurology and Psychiatry 2010; 110(4): 79–83].
  6. Vissing J. Limb Girdle Muscular Dystrophies: Classification, Clinical Spectrum and Emerging Therapies. Curr. Opin. Neurol. 2016; 29: 635–41.
  7. Коновалов Ф.А., Федотов В.П., Умаханова З.Р. и соавт. Молекулярная диагностика наследственных миопатий методом полноэкзомного секвенирования. Материалы VII Съезда Российского общества медицинских генетиков; 2015 Май 19–23; Санкт-Петербург, Россия. Москва: Медицинская Генетика; 19 [Konovalov F.A., Fedotov V.P., Umakhanova Z.R. et al. Molecular diagnostics of hereditary myopathies by full-exome sequencing. Materials of the VII Congress of the Russian Society of Medical Geneticists; 2015 May 19–23; St. Petersburg, Russia. Moscow: Medical Genetics; 19].
  8. Ampleeva M., Tolmacheva E., Komar’kov I. et al. NGS-based testing in diagnostics of hereditary neuro-muscular disorders: observations on a large cohort from a clinical bioinformatician’s perspective, https://www.nature.com/articles/s41431-020-00739-z.
  9. Thompson R., Straub V. Limb-girdle muscular dystrophies — international collaborations for translational research. Nat. Rev. Neurol. 2016; 12(5): 294–309.
  10. Piluso G., Politano L., Aurino S. et al. Extensive scanning of the calpain-3 gene broadens the spectrum of LGMD2A phenotypes. J. Med. Genet. 2005; 42(9): 686–93.
  11. Angelini C., Fanin M. Calpainopathy, https://www.ncbi.nlm.nih.gov/books/NBK1313/.
  12. Lo H.P., Cooper S.T., Evesson F.J. et al. Limb-girdle muscular dystrophy: Diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscular Disorders 2008; 18(1): 34–44.
  13. Shin J.H., Kim H.S., Lee C.H. et al. Mutations of CAPN3 in Korean Patients with Limb-Girdle Muscular Dystrophy. Journal of Korean Medical Science 2007; 22(3): 463–9.
  14. Gomez-Diaz B., Rosas-Vargas H., Roque-Ramirez B. et al. Immunodetection analysis of muscular dystrophies in Mexico. Muscle & Nerve 2012; 45(3): 338–45.
  15. Reddy H.M., Cho K.A., Lek M. et al. The sensitivity of exome sequencing in identifying pathogenic mutations for LGMD in the United States. Journal of Human Genetics 2016; 62(2): 243–52.
  16. Moore S.A., Shilling C.J., Westra S. et al. Limb-Girdle Muscular Dystrophy in the United States. Journal of Neuropathology and Experimental Neurology 2006; 65(10): 995–1003.
  17. Duno M., Sveen M.L., Schwartz M. et al. cDNA analyses of CAPN3 enhance mutation detection and reveal a low prevalence of LGMD2A patients in Denmark. European Journal of Human Genetics 2008; 16(8): 935–40.
  18. Hanisch F., Müller C.R., Grimm D. et al. Frequency of calpain-3 c.550delA mutation in limb girdle muscular dystrophy type 2 and isolated hyperCKemia in German patients. Clinical Neuropathology 2007; 26(4): 157–63.
  19. Kuhn M., Gläser D., Joshi P.R. et al. Utility of a next-generation sequencing-based gene panel investigation in German patients with genetically unclassified limb-girdle muscular dystrophy. Journal of Neurology 2016; 263(4): 743–50.
  20. Monies D., Alhindi H.N., Almuhaizea M.A et al. A first-line diagnostic assay for limb-girdle muscular dystrophy and other myopathies. Human Genomics 2016; 10(1): 32–8.
  21. Mahmood O.A., Jiang X., Zhang Q. Limb-girdle muscular dystrophy subtypes: First-reported cohort from northeastern China. Neural Regeneration Research 2013; 8(20): 1907–18.
  22. Van der Kooi A.J., Frankhuizen W.S., Barth P.G. et al. Limb-girdle muscular dystrophy in the Netherlands: Gene defect identified in half the families. Neurology 2007; 68(24): 2125–8.
  23. Fattahi Z., Kalhor Z., Fadaee M. et al. Improved diagnostic yield of neuromuscular disorders applying clinical exome sequencing in patients arising from a consanguineous population. Clinical Genetics 2017; 91(3): 386–402.
  24. Magri F., Nigro V., Angelini C. et al. The italian limb girdle muscular dystrophy registry: Relative frequency, clinical features, and differential diagnosis. Muscle Nerve 2017; 55(1): 55–68.
  25. Norwood F.L., Harling C., Chinnery P.F. et al. Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain 2009; 132(11): 3175–86.
  26. Zatz M., Vainzof M., Passos-Bueno M.R. Limb-girdle muscular dystrophy: one gene with different phenotypes, one phenotype with different genes. Current Opinion in Neurology 2000; 13(5): 511–7.
  27. De Paula F., Vainzof M., Passos-Bueno M.R. et al. Clinical variability in calpainopathy: what makes the difference? European Journal of Human Genetics 2002; 10(12): 825–32.
  28. Dinçer P., Leturcq F., Richard I. et al. A biochemical, genetic, and clinical survey of autosomal recessive limb girdle muscular dystrophies in Turkey. Annals of Neurology 1997; 42(2): 222–9.
  29. Chakravorty S., Nallamilli B.R.R., Khadilkar S.V. et al. Clinical and Genomic Evaluation of 207 Genetic Myopathies in the Indian Subcontinent. Frontiers in Neurology 2020; 11: 559327.
  30. Pathak P., Sharma M.C., Sarkar C. et al. Limb girdle muscular dystrophy type 2A in India: a study based on semi-quantitative protein analysis, with clinical and histopathological correlation. Neurology India 2010; 58(4): 549–54.
  31. Stehlikova K., Skalova D., Zidkova J. et al. Autosomal recessive limb-girdle muscular dystrophies in the Czech Republic. BMC Neurology 2014; 14: 154–63.
  32. Todorova A., Georgieva B., Tournev I. et al. A large deletion and novel point mutations in the calpain 3 gene (CAPN3) in Bulgarian LGMD2A patients. Neurogenetics 2007; 8(3): 225–9.
  33. Dorobek M., Ryniewicz B., Kabzińska D. et al. The Frequency of c.550delA Mutation of the CANP3 Gene in the Polish LGMD2A Population. Genetic Testing and Molecular Biomarkers 2015; 19(11): 637–40.
  34. Lonsdale J., Thomas J., Salvatore M. et al. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nature genetics 2013; 45(6): 580–5.
  35. Cerino M., Bartoli M., Riccardi F. et al. Autosomal dominant segregation of CAPN3 c.598_612del15 associated with a mild form of calpainopathy. Ann. Clin. Transl. Neurol. 2020; 7(12): 2538–40.
  36. Vissing J., Sveen M.L., Duno M. Dominant inheritance of limb girdle muscular dystrophy type 2A. Neuromuscular Disorders 2011; 21: 750–1.
  37. Sorimachi H., Ono Y. Regulation and physiological roles of the calpain system in muscular disorders. Cardiovascular Research 2012; 96(1): 11–22.
  38. Fanin M., Fulizio L., Nascimbeni A.C. et al. Molecular diagnosis in LGMD2A: Mutation analysis or protein testing? Human mutation 2004; 24: 52–62.
  39. Chen L., Tang F., Gao H. et al. CAPN3: A muscle-specific calpain with an important role in the pathogenesis of diseases (Review). International journal of molecular medicine 2021; 48(5): 203–16.
  40. Murphy R.M., Vissing K., Latchman H. et al. Activation of skeletal muscle calpain-3 by eccentric exercise in humans does not result in its translocation to the nucleus or cytosol. Journal of applied physiology 2011; 111(5): 1448–58.
  41. Au Y. The muscle ultrastructure: a structural perspective of the sarcomere. Cellular and molecular life sciences 2004; 61(24): 3016–33.
  42. Krüger M., Kötter S. Titin, a Central Mediator for Hypertrophic Signaling, Exercise-Induced Mechanosignaling and Skeletal Muscle Remodeling. Frontiers in physiology 2016; 7: 76–84.
  43. Roperto S., De Tullio R., Raso C. et al. Calpain3 is expressed in a proteolitically active form in papillomavirus-associated urothelial tumors of the urinary bladder in cattle. PLoS One 2010; 5(4): e10299.
  44. Angelini C., Nardetto L., Fanin M. et al. Heterogeneous pathogenesis of LGMD2: Consequences for therapy. Basic and applied myology: BAM 2007; 17: 173–9.
  45. Bansal D., Campbell K. Dysferlin and the plasma membrane repair in muscular dystrophy. Trends in Cell Biology 2004; 14: 206–13.
  46. Anderson L., Harrison R., Pogue R. et al. Secondary reduction in calpain 3 expression in patients with limb girdle muscular dystrophy type 2B and Miyoshi myopathy (primary dysferlinopathies). Neuromuscular disorders 2000; 10: 553–9.
  47. Sorimachi H., Ono Y., Suzuki K. Skeletal muscle-specific calpain, p94, and connectin/titin: their physiological functions and relationship to limb-girdle muscular dystrophy type 2A. Advances in Experimental Medicine and Biology 2000; 481: 383–95.
  48. Haravuori H., Vihola A., Straub V. et al. Secondary calpain3 deficiency in 2q-linked muscular dystrophy: titin is the candidate gene. Neurology 2001; 56: 869–77.
  49. Ermolova N., Kudryashova E., Di Franco M. et al. Pathogenity of some limb girdle muscular dystrophy mutations can result from reduced anchorage to myofibrils and altered stability. Human molecular genetics 2011; 20 (17): 3331–45.
  50. Thompson R., Straub V. Limb girdle muscular dystrophies — international collaborations for translational research. Nat. Rev. Neurol. 2016; 12: 294–309.
  51. Saenz A., Leturcq F., Cobo A.M. et al. LGMD2A: Genotype-phenotype correlations based on a large mutational survey on the calpain-3 gene. Brain 2005; 128: 732–42.
  52. Sveen M.L., Andersen S.P., Ingelsrud L.H. et al. Resistance Training in Patients with Limb-Girdle and Becker Muscular Dystrophies. Muscle Nerve 2013; 47: 163–9.
  53. Sczesny-Kaiser M., Kowalewski R., Schildhauer T.A. et al. Treadmill Training with HAL Exoskeleton-A Novel Approach for Symptomatic Therapy in Patients with Limb-Girdle Muscular Dystrophy-Preliminary Study. Frontiers in Neuroscience 2017; 11: 1–9.
  54. Bartoli M., Roudaut C., Martin S. et al. Safety and efficacy of AAV-mediated calpain 3 gene transfer in a mouse model of limb-girdle muscular dystrophy Type 2A. Mol. Ther. 2006; 13: 250–9.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (122KB)
3. Fig. 2

Download (314KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies