Human mitochondrial genome surgery

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Pathogenic mitochondrial DNA (mtDNA) mutations are often in a state of heteroplasmy. The increasing mtDNA mutation load with age generally related to aggravation of symptoms and is also a one of the main sign of organism aging. Heteroplasmy shifting which can alleviate mitochondrial functionality is most perspective approach to fight mitochondrial diseases. Molecular machines to shift heteroplasmy level recognize mutant mtDNA and cut them. In general the molecular machines could be divided into two groups: mitochondria-targeted protein-only nucleases such as mitoREs, mitoZFNs, mitoTALENs, and RNA-protein systems such as mitoRGENs. The latest seem to be more flexible and offer perspective due to their reliance on Watson-Crick interactions for specific mtDNA site recognition. We discuss also some application area for the mitoRGEN systems.

Full Text

Restricted Access

About the authors

I. O Mazunin

Immanuel Kant Baltic Federal University

Email: IMazunin@kantiana.ru

References

  1. Spinelli J.B., Haigis M.C. The multifaceted contributions of mitochondria to cellular metabolism. Nature cell biology 2018; 20(7): 745-54.
  2. Anderson S., Bankier A.T., Barrell B.G. et al. Sequence and organization of the human mitochondrial genome. Nature 1981; 290(5806): 457-65.
  3. Hashimoto Y., Ito Y., Niikura T. et al. Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochemical and biophysical research communications 2001; 283: 460-8.
  4. Lee C., Kim K.H., Cohen P. MOTS-c: a novel mitochondrial-derived peptide regulating muscle and fat metabolism. Free Radical Biology and Medicine 2016; 100: 182-7.
  5. Mercer T.R., Neph S., Dinger M.E. et al. The human mitochondrial transcriptome. Cell 2011; 146: 645-58.
  6. Rackham O., Shearwood A.M.J., Mercer T.R. et al. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclearencoded proteins. RNA 2011; 17(12): 2085-93.
  7. Bandiera S., Rüberg S., Girard M., et al. Nuclear outsourcing of RNA interference components to human mitochondria. PloS one 2011; 6(6): e20746.
  8. Gorman G.C., Chinnery P.F., DiMauro S. et al. Mitochondrial diseases. Nat. Rev. Dis. Primers. 2016; 2:16080.
  9. Khrapko K., Turnbull D. Mitochondrial DNA mutations in aging. In: Progress in molecular biology and translational science. Academic Press; 2014: 29-62.
  10. Zhang D., Keilty D., Zhang Z.F. et al. Mitochondria in oocyte aging: current understanding. Facts, views & vision in ObGyn 2017; 9: 29.
  11. Rahman J, Rahman S. Mitochondrial medicine in the omics era. Lancet 2018; 391(10139): 2560-74.
  12. Bacman S.R., Pereira C.V. Moraes C.T. Targeted Mitochondrial Genome Elimination. In: Mitochondrial Biology and Experimental Therapeutics. Springer; 2018: 535-63.
  13. Komor A.C. Badran A.H. Liu D.R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 2017; 168: 20-36.
  14. Komor A.C., Kim Y.B., Packer M.S. et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420-4.
  15. Komor A.C., Zhao K.T., Packer M.S. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science advances. 2017; 3(8): eaao4774.
  16. Gaudelli N.M., Komor A.C., Rees H.A. et al. Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Nature 2017; 551(7681): 464-71.
  17. Weber-Lotfi F., Dietrich A. Targeting Therapeutic Nucleic Acids into Mitochondria: A Long Challenge. In: Mitochondrial Biology and Experimental Therapeutics. Springer; 2018: 565-92.
  18. Srivastava S., Moraes C.T. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Human molecular genetics 2001; 10: 3093-9.
  19. Moretton A., Morel F., Macao B. et al. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One 2017; 12: e0176795.
  20. Srivastava S., Moraes C.T. Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans. Human molecular genetics 2005; 14: 893-902.
  21. Fukui H., Moraes C.T. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Human molecular genetics 2008; 18: 1028-36.
  22. Tanaka M., Borgeld H.J. Zhang J. et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci. 2002; 9: 534-41.
  23. Alexeyev M.F., Venediktova N., Pastukh V. et al. Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene therapy 2008; 15(7): 516-23.
  24. Minczuk M., Papworth M.A., Kolasinska P. et al. Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. PNAS USA 2006; 103: 19689-94.
  25. Minczuk M., Papworth M.A., Miller J.C. et al. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic acids research 2008; 36: 3926-38.
  26. Gammage P.A., Gaude E., Van Haute L. et al. Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZF-Ns. Nucleic acids research 2016; 44: 7804-16.
  27. Gammage P.A., Rorbach J., Vincent A.I. et al. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO molecular medicine 2014; 6(4): 458-66.
  28. Cermak T., Doyle E.L., Christian M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic acids research 2011; 39(12): e82.
  29. Bacman S.R., Williams S.L., Pinto M. et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nature medicine 2013; 19(9): 1111-3.
  30. Hashimoto M., Bacman S.R., Peralta S. et al. MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol. Therapy 2015; 23: 1592-9.
  31. Reddy P., Ocampo A., Suzuki K. et al. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 2015; 161: 459-69.
  32. Yang Y., Wu H., Kang X. et al. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein & cell 2018; 9: 283-97.
  33. Pereira C.V., Bacman S.R., Arguello T. et al. MitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels. EMBO molecular medicine 2018; doi: 10.15252/emmm.201708084.
  34. Campbell J.M., Clemente E.P., Ata H. et al. Engineering targeted deletions in the mitochondrial genome. bioRxiv 287342: doi: https://doi. org/10.1101/287342.
  35. Bacman S.R., Kauppila J.H.K., Pereira C.V. et al. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med. 2018; 24(11): 1696-700.
  36. Gammage P.A., Viscomi C., Simard M.L. et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med. 2018; 24(11): 1691-5.
  37. Leslie M. 'Old' genome editors might treat mitochondrial diseases. Science 2018; 361(6409): 1302.
  38. Jinek M., Chylinski K., Fonfara I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816-21.
  39. Jiang F., Doudna J.A. CRISPR-Cas9 structures and mechanisms. Annual review of biophysics 2017; 46: 505-29.
  40. Jo A., Ham S., Lee G. et al. Efficient mitochondrial genome editing by CRISPR/Cas9. BioMed research international. 2015: doi: 10.1155/2015/305716.
  41. Loutre R., Heckel A.M., Smirnova A. et al. Can Mitochondrial DNA be CRISPRized: Pro and Contra. IUBMB Life. 2018; 70(12): 1233-1239.
  42. Орищэнко К.Е., Софронова Ю.К., Чупахин Е.Г. и др. Импорт нуклеазы Cas9 в митохондрии. Гены и клетки 2016; 11: 100-5.
  43. Bacman S.R., Williams S.L., Pinto M. et al. The use of mitochondria-targeted endonucleases to manipulate mtDNA. In: Methods in enzymology. Academic Press; 2014: 373-97.
  44. Patananan A.N., Wu T.H., Chiou P.Y. et al. Modifying the mitochondrial genome. Cell metabolism 2016; 23: 785-96.
  45. Craven L., Alston C.L., Taylor R.W. et al. Recent advances in mitochondrial disease. Annual review of genomics and human genetics 2017; 18: 257-75.
  46. Gammage P.A., Moraes C.T., Minczuk M. Mitochondrial genome engineering: the revolution may not be CRISPR-ized. Trends in Genetics 2017; S0168-9525(17): 30191-9.
  47. Pereira C.V., Moraes C.T. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy. Front Biosci (Landmark Ed.) 2017; 22: 991-1010.
  48. Rai P.K., Craven L., Hoogewijs K. et al. Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome. Essays in biochemistry 2018; 62(3): 455-65.
  49. Vereshchagina N., Nikitchina N., Yamada Y. et al. Future of human mitochondrial DNA editing technologies. Mitochondrial DNA, Part A. 2018: doi: 10.1080/24701394.2018.1472773.
  50. Vereshchagina N., Orishchenko K., Shevtsova A. et al. Modified CRISPR/ Cas9 system shifts down mtDNA copy number. In: Mitochondria in life, death and disease; 2017 Oct 9-13, Brindisi, Italy: doi: 10.13140/RG.2.2.20969.80480.
  51. Nishimasu H., Ran F.A., Hsu P.D. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014; 156: 935-49.
  52. Konermann S., Brigham M.D., Trevino A.E. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015; 517: 583-8.
  53. Wang G., Shimada E., Nili M. et al. Mitochondria-targeted RNA import. In: Mitochondrial Medicine. Humana Press 2015: 107-16.
  54. Dovydenko I., Heckel A.M., Tonin Y. et al. Mitochondrial targeting of recombinant rNa. In: Mitochondrial Medicine. Humana Press 2015: 209-25.
  55. Loutre R., Heckel A-M., Jeandard D., et al. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner. PLoS ONE. 2018; 13(6): e0199258.
  56. Anders C., Niewoehner O., Duerst A. et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 2014; 513: 569-73.
  57. Palermo G., Ricci C.G., Fernando A. et al. Protospacer adjacent motif-induced allostery activates CRISPR-Cas9. J. Am. Chem. Soc. 2017; 139: 16028-31.
  58. Peeva V., Blei D., Trombly G. et al. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nature communications 2018: doi: 10.1038/s41467-018-04131-w.
  59. Nissanka N., Bacman S.R., Plastini M.J. et al. The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions. Nature communications 2018: doi: 10.1038/s41467-018-04895-1.
  60. Zetsche B., Gootenberg J.S., Abudayyeh O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163: 759-71.
  61. Yamano T., Nishimasu H., Zetsche B. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 2016; 165: 949-62.
  62. Damas J., Samuels D.C., Carneiro J. et al. Mitochondrial DNA rearrangements in health and disease - a comprehensive study. Human mutation 2014; 35: 1-14.
  63. Reeve A.K., Krishnan K.J., Elson J.L. et al. Nature of mitochondrial DNA deletions in substantia nigra neurons. Am. J. Human Genetics 2008; 82: 228-35.
  64. Nido G.S., Dölle C., Fl0nes I. et al. Ultradeep mapping of neuronal mitochondrial deletions in Parkinson's disease. Neurobiology of aging 2018; 63: 120-7.
  65. Nikitchina N., Vereshchagina N., Shebanov N. et al. Modification of RGEN/AsCpf1 elements for import and function inside of the human mitochondrion. In: CRISPR 2018 June 20-23, Vilnius, Lithuania: doi: 10.13140/ RG.2.2.35230.43844.
  66. Gao L., Cox D.B., Yan W.X. et al. Engineered Cpf1 variants with altered PAM specificities. Nature biotechnology 2017; 35: 789-92.
  67. Nishimasu H., Yamano T., Gao L. et al. Structural basis for the altered PAM recognition by engineered CRISPR-Cpf1. Molecular cell 2017; 67: 139-47.
  68. Vereshchagina N., Shebanov N., Nikitchina N. et al. Mitochondriatargeted Cas9-BE4-Gam and Cas9-ABE 7.10 base editing nucleases. In: CRISPR 2018 June 20-23, Vilnius, Lithuania: doi: 10.13140/RG.2.2.14258.91844.
  69. Kleinstiver B.P., Prew M.S., Tsai S.Q. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015; 523: 481-5.
  70. Kleinstiver B.P., Prew M.S., Tsai S.Q., et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nature biotechnology 2015; 33: 1293-8.
  71. Craven L., Tang M., Gorman G.S. et al. Novel reproductive technologies to prevent mitochondrial disease. Human Reproduction Update 2017; 1-19.
  72. Zhang J., Liu H., Luo S. et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reproductive biomedicine online 2017; 34: 361-8.
  73. Kang E., Wu J., Gutierrez N.M. et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 2016; 540: 270-5.
  74. Wolf D.P., Hayama T., Mitalipov S. Mitochondrial genome inheritance and replacement in the human germline. The EMBO journal 2017; 36(17): 2659.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies