Emotion regulation: a study of electroencephalographic correlates

Capa


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Effective emotion regulation is associated with improved subjective well-being, mental health, and social goal attainment. Poor psychosocial well-being, depression, and psychiatric disorders are often associated with the inability to regulate emotions. Cognitive reappraisal, which focuses on events, and expressive suppression, which is reaction-oriented, have both garnered significant attention in psychophysiological studies as effective strategies for emotion regulation. Cognitive reappraisal focuses on changing the meaning of a situation, while suppression occurs later in the emotional experience, when efforts are made to suppress the behavioral and physiological responses associated with ongoing emotions [1]. Suppression regulates emotions for a shorter period, while reappraisal has a long-term effect on emotion regulation.

While somatovegetative markers of emotion regulation have been thoroughly investigated [2, 3], further research is needed to explore the brain correlates of this process. Our aim was to examine the electroencephalographic (EEG) correlates of emotion regulation. For this study, we computed correlations between subjects or inter-subject correlation (ISC; an indicator of attention, engagement, and tension [4]) and EEG valence and arousal indices [5] (64 leads in total). Sixty participants (average age=26.0) either suppressed their emotional responses, employed reappraisal, or viewed neutral 1-minute videos with negative content (36 trials in total). Both suppression and reappraisal elicited higher levels of ISC compared to viewing negative or neutral videos (F(3, 168)=25.23, p <0.001, η²=0.10). The pairwise comparisons revealed that viewing neutral videos resulted in lower ISC than viewing negative videos (t(56)=4.26, p <0.001, d=0.47), suppression (t(56)=9.04, p <0.001, d=0.78), and reappraisal (t(56)=11.0, p <0.0001, d=0.77). Both suppression and reappraisal resulted in higher ISC compared to watching negative videos (t(56)=3.38, p=0.002, d=0.40 and t(56)=2.96, p=0.005, d=0.39, 1-β=0.83, respectively). It suggests a need for task engagement and feedback processing to manage emotion. Additionally, the arousal index was greater in all negative conditions, suggesting that regulation necessitated a specific level of arousal (χ2(3)=12.8, p=0.005, W=0.075). Wilcoxon’s tests revealed a significant decrease in arousal index when viewing neutral videos compared to negative ones (V=465, p=0.012, r=0.053). Conversely, suppressing (V=499, p=0.019, r=0.057) and reappraisal (V=395, p=0.004, r=0.096) elicited higher levels of arousal. Thirdly, the EEG valence index exhibited elevated levels in both emotions regulation states compared to the neutral state (χ2(3)=10.5, p=0.015, W=0.061). Furthermore, the Wilcoxon tests revealed that the valence index was reduced when watching neutral videos in comparison to suppression (V=525, p=0.048, r=0.136) and reappraisal (V=500, p=0.048, r=0.165). This suggests an upsurge in the positive emotional aspect when regulating emotions.

Overall, various EEG measurements reflect distinct aspects of emotion regulation, although both suppression and cognitive reassessment induced greater brain resource allocation than passive viewing.

Texto integral

Effective emotion regulation is associated with improved subjective well-being, mental health, and social goal attainment. Poor psychosocial well-being, depression, and psychiatric disorders are often associated with the inability to regulate emotions. Cognitive reappraisal, which focuses on events, and expressive suppression, which is reaction-oriented, have both garnered significant attention in psychophysiological studies as effective strategies for emotion regulation. Cognitive reappraisal focuses on changing the meaning of a situation, while suppression occurs later in the emotional experience, when efforts are made to suppress the behavioral and physiological responses associated with ongoing emotions [1]. Suppression regulates emotions for a shorter period, while reappraisal has a long-term effect on emotion regulation.

While somatovegetative markers of emotion regulation have been thoroughly investigated [2, 3], further research is needed to explore the brain correlates of this process. Our aim was to examine the electroencephalographic (EEG) correlates of emotion regulation. For this study, we computed correlations between subjects or inter-subject correlation (ISC; an indicator of attention, engagement, and tension [4]) and EEG valence and arousal indices [5] (64 leads in total). Sixty participants (average age=26.0) either suppressed their emotional responses, employed reappraisal, or viewed neutral 1-minute videos with negative content (36 trials in total). Both suppression and reappraisal elicited higher levels of ISC compared to viewing negative or neutral videos (F(3, 168)=25.23, p <0.001, η²=0.10). The pairwise comparisons revealed that viewing neutral videos resulted in lower ISC than viewing negative videos (t(56)=4.26, p <0.001, d=0.47), suppression (t(56)=9.04, p <0.001, d=0.78), and reappraisal (t(56)=11.0, p <0.0001, d=0.77). Both suppression and reappraisal resulted in higher ISC compared to watching negative videos (t(56)=3.38, p=0.002, d=0.40 and t(56)=2.96, p=0.005, d=0.39, 1-β=0.83, respectively). It suggests a need for task engagement and feedback processing to manage emotion. Additionally, the arousal index was greater in all negative conditions, suggesting that regulation necessitated a specific level of arousal (χ2(3)=12.8, p=0.005, W=0.075). Wilcoxon’s tests revealed a significant decrease in arousal index when viewing neutral videos compared to negative ones (V=465, p=0.012, r=0.053). Conversely, suppressing (V=499, p=0.019, r=0.057) and reappraisal (V=395, p=0.004, r=0.096) elicited higher levels of arousal. Thirdly, the EEG valence index exhibited elevated levels in both emotions regulation states compared to the neutral state (χ2(3)=10.5, p=0.015, W=0.061). Furthermore, the Wilcoxon tests revealed that the valence index was reduced when watching neutral videos in comparison to suppression (V=525, p=0.048, r=0.136) and reappraisal (V=500, p=0.048, r=0.165). This suggests an upsurge in the positive emotional aspect when regulating emotions.

Overall, various EEG measurements reflect distinct aspects of emotion regulation, although both suppression and cognitive reassessment induced greater brain resource allocation than passive viewing.

ADDITIONAL INFORMATION

Funding sources. The study received financial support from grant No. 22-48-08002 provided by the Russian Science Foundation, https://rscf.ru/project/22-48-08002/, employing the HSE automated non-invasive brain stimulation system which permits synchronization of brain activity and eye movement recordings (No. 354937).

×

Sobre autores

V. Kosonogov

National Research University “Higher School of economics”

Autor responsável pela correspondência
Email: vkosonogov@hse.ru
Rússia, Moscow

I. Ntoumanis

National Research University “Higher School of economics”

Email: vkosonogov@hse.ru
Rússia, Moscow

G. Hajiyeva

National Research University “Higher School of economics”

Email: vkosonogov@hse.ru
Rússia, Moscow

I. Jaaskelainen

National Research University “Higher School of economics”

Email: vkosonogov@hse.ru
Rússia, Moscow

Bibliografia

  1. Gross J.J. Emotion regulation in adulthood: Timing is everything // Current Directions in Psychological Science. 2001. Vol. 10, N 6. P. 214–219. doi: 10.1111/1467-8721.00152
  2. Zaehringer J., Jennen-Steinmetz C., Schmahl C., et al. Psychophysiological effects of downregulating negative emotions: Insights from a meta-analysis of healthy adults // Frontiers in Psychology. 2020. Vol. 11. P. 470. doi: 10.3389/fpsyg.2020.00470
  3. Mohammed A.R., Kosonogov V., Lyusin D. Expressive suppression versus cognitive reappraisal: effects on self-report and peripheral psychophysiology // International Journal of Psychophysiology. 2021. Vol. 167. P. 30–37. doi: 10.1016/j.ijpsycho.2021.06.007
  4. Dmochowski J.P., Sajda P., Dias J., Parra L.C. Correlated components of ongoing EEG point to emotionally laden attention–a possible marker of engagement? // Frontiers in Human Neuroscience. 2012. Vol. 6. P. 112. doi: 10.3389/fnhum.2012.00112
  5. Ramirez R., Vamvakousis Z. Detecting Emotion from EEG Signals Using the Emotive Epoc Device. In: Zanzotto F.M., Tsumoto S., Taatgen N., Yao Y., editors. Brain Informatics 2012: Lecture Notes in Computer Science; Springer, Berlin, Heidelberg; 2012. Vol. 7670. P. 175–184. doi: 10.1007/978-3-642-35139-6_17

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Eco-Vector, 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies