Discovery of the main genes regulating iron metabolism is the result of the study of hemochromatosis



Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The review article is devoted to the history of the discovery of genes that regulate iron metabolism. The natural model that became the basis for the study of genes was hemochromatosis (HC). HC is a hereditary disease caused by excess iron in tissues. The first to be discovered was the HFE gene, whose physiological role is to prevent iron overload in cells by decreasing the binding of transferrin receptor-1 (TFR-1) to metal-saturated transferrin. This happened in 1996; the gene was mapped to chromosome 6p.23.3. In the European population, mutations in the HFE gene were detected in 80-100% of patients with HC. This variant of the disease is classified as type 1 He in OMIM. In 1999, the HJV gene on chromosome 1q21 was discovered, the product of which, hemouvelin, was later found to modulate the expression of hepcidin, and the SLC40A1 gene on chromosome 2q32, which encodes ferroportin, an iron transporter from enterocytes, macrophages, hepatocytes and placental cells into blood plasma. HC associated with mutations in these genes is represented by types 2A and 4 in the OMIM classification. In 2000, the HAMP gene on chromosome 19q13.1 was discovered, encoding the main iron regulatory hormone hepcidin, which blocks ferroportin, and the TFR-2 gene on chromosome 7q22. controlling the capture of iron by hepato-cytes and bone marrow cells, as well as the level of metal in the blood plasma. HC associated with mutations in these genes is represented by types 2B and 3 in the OMIM classification.

Texto integral

Acesso é fechado

Sobre autores

O. Smirnov

I.I. MechnikovNorth-Western State Medical University

Email: oasmirnov@yandex.ru

O. Smirnova

I.I. MechnikovNorth-Western State Medical University

Bibliografia

  1. Faller M., Matsunaga M., Yin S. et al. Guo Heme is involved in microRNA processing. Nat. Struct. Mol. Biol. 2007; 14(1): 23-9.
  2. Yin L., Wu N., Curtin J.C., et al. Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 2007; 318: 1786-9.
  3. Von Recklinghausen F.D. Uber Hemochromatose. Tageblatt Vers-ammlung Dtsche Naturforscher Arzte Heidelberg 1889; 62: 324-5.
  4. Trousseau A. Clinique medicale de l’Hotel-Dieu de Paris. V. 2. Paris: J.-B. Bailliere, 1865.
  5. Troisier M. Diabete sucre. Bull. De la Soc. D’Anat., Paris. 1871; 44(1): 231-5.
  6. Горделадзе А.С., Смирнов О.А., Радченко В.Г., Сабурова Г.С. Клинико-морфологическая характеристика первичного гемохроматоза. Архив патологии 1995; 57(6): 44-8. [Gordeladze A.S., Smirnov O.A., Radchenko V.G., Saburova G.S. Clinical and morphological characteristics of primary hemochromatosis. Arch. Pathology 1995; 57 (6): 44-8].
  7. Смирнов О.А. Первичный гемохроматоз. Клинико-морфологические проявления и биохимические маркеры. Российский медицинский журнал 2000; 5: 48-51. [Smirnov O.A. Primary hemochromatosis. Clinical and morphological manifestations and biochemical markers.Russian Med. J. 2000; 5: 48-51].
  8. Britton R.S. Metal-induced hepatotoxicity. Semin. Liver Dis. 1996; 16(1): 3-12.
  9. Sheldon J.H. Haemochromatosis. London: Oxford Univ. Press; 1935.
  10. Simon M., Bourel M., Fauchet R., Genetet B. Association of HLA-A3 and HLA-B14 antigens with idiopathic haemochromatosis. Gut 1976; 17(5): 332-4.
  11. Simon M., Alexander J., Fauchet R. et al. The genetics of hemochromatosis. Progr. Med. Genet. 1980; 4(2): 135-68.
  12. Feder J.N., Gnirke A., Thomas W. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 1996; 13(4): 399-408.
  13. Feder J.N., Penny D.M., Irrinki A. et al. The hemochromatosis gene product complexes with transferrin receptor and lowers its affinity for ligand binding. PNAS USA 1998; 95(4): 1472-7.
  14. Lebron J.A., Bennett M.J., Vaughu D.E. et al. Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell 1998; 93(1): 111-23.
  15. Zhou X.Y., Tomatsu S., Fleming R.E., et al. HFE gene knockout produces mouse model of hereditary haemochromatosis. PNAS USA 1998; 95(5): 2492-7.
  16. Barton J.C., Shin W.W., Sawada-Hirai R. et al. Genetic and clinical description of hemochromatosis probands and heterozygotes: evidence that multiple genes linked to the major histocompatibility complex are responsible for hemochromatosis. Blood Cells Mol. Dis. 1997; 23(1): 135-45.
  17. Roetto A., Totaro A., Cazzola M. et al. Juvenile hemochromatosis locus maps to chromosome 1q. Am.J. Hum. Genet. 1999; 64(5): 1388-93.
  18. Roetto A., Papanicolaou G., Politou M. et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat. Genet. 2003; 33: 21-2.
  19. Krause A., Neitz S., Magert H.J. et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibit antimicrobial activity. FEBS Lett. 2000; 480(2): 147-50.
  20. Park C.H., Valore E.V., Waring A.J., Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 2001; 276(11): 7806-10.
  21. Kawabata H., Yang R., Hirama T. et al. Molecular cloning of transferrin receptor 2: a new member of transferrin receptor-like family. J. Biol. Chem. 1999; 274: 20826-32.
  22. Camaschella C., Roetto A., Cali A. et al. The gene TFR2 is mutated in new type of haemochromatosis mapping to 7q22. Nat. Genet. 2000; 25(1): 14-5.
  23. Pietrangelo A., Montosi G., Totaro A. et al. Hereditary hemochromatosis in adults without pathogenic mutations in the hemochromatosis gene. N. Engl. J. Med. 1999; 341: 725-32.
  24. Montosi G., Donovan A., Torato A., et al. Autosomal-dominant hemochromatosis associated with a mutation in ferroportin (SLC11A3) gene. J. Clin. Invest. 2001; 108: 619-23.
  25. Gordeuk V.R., Caleffi A., Corradini E. et al. Iron overload in Africans and African-Americans and common mutation in the SLC40A1 (ferroportin) gene. Blood Cells Mol. Dis. 2003; 31: 299-304.
  26. Badar S., Busti F., Ferrarini A. et al. Identification of novel mutations in hemochromatosis genes by targeted next generation sequencing in Italian patients with unexplained iron overload. Amer. J. Hematol. 2016; 91: 420-25.
  27. Fleming R.E., Sly W.S. Hepcidin: a putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic diseases. PNAS USA 2001; 98(15): 8160-62.
  28. Ganz T., Nemeth E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am.J. Physiol. Gastrointest. Liver Physiol. 2006; 290(2): 199-203.
  29. Ramos E., Ruchala P., Goodnough J.B. et al. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood 2012; 120(18): 3829- 36.
  30. Смирнов О.А., Смирнова О.Н. Цитокин-индуцированная экспрессия гепцидина в патогенезе анемии при хронических заболеваниях и опухолях как мишень для новых терапевтических стратегий. Цитокины и воспаление 2016; 15(1): 22-7

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Eco-Vector, 2021



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies