Biological activity comparative evaluation of the gene-activated bone substitutes made of octacalcium PHOSPHATE AND PLASMID DNA CARRYING VEGF AND SDF GENES: PART 1 - IN VITRO

  • Authors: Bozo I.Y1,2,3,4,5, Maiorova K.S6, Drobyshev A.Y7, Rozhkov S.I7, Volozhin G.A7, Eremin I.I8, Komlev V.S9,10, Smirnov I.V9,10, Rizvanov A.A11, Isaev A.A12, Popov V.K10, Deev R.V13,2,10
  • Affiliations:
    1. Federal Research Center “Crystallography and photonics” RAS
    2. Human Stem Cells Institute
    3. A.I. Evdokimov Moscow State University of Medicine and Dentistry
    4. State Research Center “A.I. Burnazyan Federal Medical Biophysical Center” of the FMBA of Russia
    5. Institute of General Genetics of the RAS.
    6. A.I. Evdokimov Moscow State University of Medicine and Dentistry.
    7. Central Clinical Hospital with Outpatient Health Center of the Business Administration for the President of the Russian Federation.
    8. A.A. Baykov Institute of Metallurgy and Material Science of the RAS
    9. Federal Research Center “Crystallography and photonics” RAS.
    10. Kazan (Volga region) Federal University.
    11. Human Stem Cells Institute.
    12. I.P.Pavlov Ryazan State Medical University
  • Issue: Vol 11, No 4 (2016)
  • Pages: 34-42
  • Section: Articles
  • URL: https://genescells.ru/2313-1829/article/view/120571
  • DOI: https://doi.org/10.23868/gc120571
  • ID: 120571


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

High need for effective bone substitutes and drawbacks of the materials approved for clinical use determine the increasing activity of biomedical research in this area. We have developed gene-activated bone substitutes consisting of a scaffold based on octacalcium phosphate (OCP) and one of the two variants of plasmid DNA carrying either a gene for vascular endothelial growth factor (VEGF) or two genes encoding VEGF and stromal derived factor-1а (SDF-1a). The aim of the study was to evaluate the cytotoxicity of the gene-activated materials and their components, as well as biological activity in vitro. We found that both OCP and gene-activated bone substitutes did not have any cytotoxicity, but reduced the proliferative activity of human bone marrow-derived multipotent mesenchymal stromal cells: material with doublegene construct decreased cell culture doubling rate of 24.3% more compared with the material carrying plasmid DNA encoding only VEGF. Both gene-activated materials led to an increase in therapeutic genes mRNA levels, but the material with double-gene system enhanced VEGF protein production greater. Thus, the gene-activated bone substitutes characterized by the absence of cytotoxic properties and possessed a specific activity increasing expression of the therapeutic genes. However, further studies are needed to detail the identified characteristics and assess the feasibility of the defined biological action in vivo. свойств и обладали специфической активностью в виде увеличения экспрессии терапевтических генов. Однако дальнейшие исследования необходимы для детализации выявленных особенностей и оценки реализуемости биологического действия in vivo.

Full Text

Restricted Access

About the authors

I. Y Bozo

Federal Research Center “Crystallography and photonics” RAS; Human Stem Cells Institute;A.I. Evdokimov Moscow State University of Medicine and Dentistry;State Research Center “A.I. Burnazyan Federal Medical Biophysical Center” of the FMBA of Russia;

Moscow, Russia

K. S Maiorova

Institute of General Genetics of the RAS.

Moscow, Russia

A. Y Drobyshev

A.I. Evdokimov Moscow State University of Medicine and Dentistry.

Moscow, Russia

S. I Rozhkov

A.I. Evdokimov Moscow State University of Medicine and Dentistry.

Moscow, Russia

G. A Volozhin

A.I. Evdokimov Moscow State University of Medicine and Dentistry.

Moscow, Russia

I. I Eremin

Central Clinical Hospital with Outpatient Health Center of the Business Administration for the President of the Russian Federation.

Moscow, Russia

V. S Komlev

A.A. Baykov Institute of Metallurgy and Material Science of the RAS; Federal Research Center “Crystallography and photonics” RAS.

I. V Smirnov

A.A. Baykov Institute of Metallurgy and Material Science of the RAS;Federal Research Center “Crystallography and photonics” RAS.

Moscow, Russia

A. A Rizvanov

Kazan (Volga region) Federal University.

Kazan, Russia

A. A Isaev

Human Stem Cells Institute.

Moscow, Russia

V. K Popov

Federal Research Center “Crystallography and photonics” RAS.

Moscow, Russia

R. V Deev

I.P.Pavlov Ryazan State Medical University;Human Stem Cells Institute; Federal Research Center “Crystallography and photonics” RAS.

Ryazan,Moscow,Russia.

References

  1. Garcia-Gareta E., Coathup M.J., Blunn G.W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 2015; 81: 112-21.
  2. Deev R.V., Drobyshev A.Y., Bozo I.Y. et al. Ordinary and activated bone grafts: applied classification and the main features. Biomed Res Int. 2015; 2015: 365050.
  3. Evans C.H. Gene delivery to bone. Adv. Drug Deliv. Rev. 2012; 64(12): 1331-40.
  4. Keeney M., van den Beucken J.J., van der Kraan P.M. et al. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165). Biomaterials 2010; 31(10): 2893-902.
  5. Гололобов В.Г., Дедух Н.В., Деев Р.В. Скелетные ткани и органы. В кн.: Руководство по гистологии, 2 издание. Т.1. 201 1 ; СПб: СпецЛит. С. 238-322.
  6. Komlev V.S., Barinov S.M., Bozo I.I. et al. Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behaviour. ACS Appl. Mater. Interfaces 2014; 6(19): 16610-20.
  7. Marquez-Curtis L.A., Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/ CXCR4 axis. Biomed. Res. Int. 2013; 2013: 561098.
  8. Niederberger E., Geisslinger G. Proteomics and NF-kB: an update. Expert Rev. Proteomics 2013; 10(2): 189-204
  9. Deev R., Plaksa I., Bozo I. et al. Results of an international postmarketing surveillance study of pl-VEGF165 safety and efficacy in 210 patients with peripheral arterial disease. Am. J. Cardiovasc. Drugs. 2017 Jan 3. doi: 10.1007/s40256-016-0210-3. [Epub ahead of print]
  10. Deev R.V., Bozo I.Y., Mzhavanadze N.D. et al. pCMV-vegf165 intramuscular gene transfer is an effective method of treatment for patients with chronic lower limb ischemia. J. Cardiovasc. Pharmacol. Ther. 2015; 20(5): 473-82.
  11. Ризванов А.А., Соловьева В.В., Салафутдинов И.И. и др. Кодон-оптимизированные последовательности фармацевтическая композиция для восстановления кровеносных сосудов. Приоритет от 18.06.2014. Патент РФ №2557385 от 24.06.2015. 1 2. Исаев А.А., Киселев С.Л., Деев Р.В. и др. Биокомпозит для обеспечения восстановительных процессов после повреждения у млекопитающего, способ его получения (варианты) и применения. Приоритет от 29.1 2.201 1. Патент РФ №251 9326 от 1 4 апреля 2014, патент Украины №112450 от 12.09.2016.
  12. Дробышев А.Ю., Рубина К.А., Сысоева В.Ю. и др. Клиническое исследование применения тканеинженерной конструкции на основе аутологичных стромальных клеток из жировой ткани у пациентов с дефицитом костной ткани в области альвеолярного отростка верхней челюсти и альвеолярной части нижней челюсти. Вестник экспериментальной и клинической хирургии 2011; IV(4): 764-72.
  13. Гололобов В.Г., Дедух Н.В., Деев Р.В. Скелетные ткани и органы. В кн.: Руководство по гистологии, 2 издание. Т.1. 201 1 ; СПб: СпецЛит. С. 238-322.
  14. Зорин В.Л., Зорина А.И., Еремин И.И. и др. Сравнительный анализ остеогенного потенциала мультипотентных мезенхимальных стромальных клеток слизистой оболочки полости рта и костного мозга. Клеточная трансплантология и тканевая инженерия 201 4; IX(1): 50-7. 1 5. Деев Р.В., Дробышев А. Ю., Бозо И.Я. и др. Создание и оценка биологического действия ген-активированного остеопластического материала, несущего ген VEGF человека. Клеточная трансплантология и тканевая инженерия 2013; 8(3): 78-85.
  15. Бозо И.Я., Деев Р.В., Дробышев А.Ю. и др. Эффективность ген-активированного остеопластического материала на основе октакальциевого фосфата и плазмидной ДНК с геном vegf в восполнении «критических» костных дефектов. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2015; 1: 35-42.
  16. Bozo I.Y., Deev R.V., Drobyshev A.Y. et al. World's first clinical case of gene-activated bone substitute application. Case Reports in Dentistry 2016; 2016: 8648949.
  17. Feichtinger G.A., Hofmann A.T., Slezak P. et al. Sonoporation increases therapeutic efficacy of inducible and constitutive BMP2/7 in vivo gene delivery. Hum. Gene Ther. Methods. 2014; 25(1): 57-71.
  18. Liu J.Z., Hu Y.Y., Ji Z.L. Co-expression of human bone morphogenetic protein-2 and osteoprotegerin in myoblast C2C12. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2003; 17(1): 1-4.
  19. Yang L., Zhang Y., Dong R. et al. Effects of adenoviral-mediated coexpression of bone morphogenetic protein-7 and insulin-like growth factor-1 on human periodontal ligament cells. J. Periodontal. Res. 2010; 45(4): 532-40.
  20. Amable P.R., Teixeira M.V., Carias R.B. et al. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly. Stem Cell Res. Ther. 2014; 5(2): 53.
  21. Berendsen A.D., Olsen B.R. How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells. J. Histochem. Cytochem. 2014; 62(2): 103-8.
  22. Liu Y., Berendsen A.D., Jia S. et al. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J. Clin. Invest. 2012; 122(9): 3101-13.
  23. Grunewald M, Avraham I, Dor Y et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell. 2006; 124(1): 175-89.
  24. Hong X., Jiang F., Kalkanis S.N. et al. SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Lett. 2006; 236(1): 39-45.
  25. Graham F.L., van der Eb AJ. Transformation of rat cells by DNA of human adenovirus 5. Virology 1973; 54(2):536-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies