Technology for creating fabric-engineered structures with a given shape

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Full Text

Restricted Access

About the authors

A. V. Volkov

Author for correspondence.
Email: redaktor@celltranspl.ru
Russian Federation

References

  1. Agrawal С.М., Athanasiou К.А., Heckman J.D.Biodegradable PLA/PGA polymers fortissue engineering in orthopaedica.Material Science Forum 1997; 250:115-28.
  2. Agrawal CM, Ray R.B. Biodegradable polymer scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 2001; 55:141.
  3. Aframian D.J., Redman R.S., Yamano S. et al. Tissue compatibility of two biodegradable tubular scaffolds implanted adjacent to skin or buccal mucosa in mice. Tissue Eng. 2002; 8: 649-59.
  4. Behravesh E., Yasko A.W., Engle P.S., Mikos A.G. Synthetic biodegradable polymers for orthopaedic applications. Clin. Orthop. 1999; 367S: 118-85.
  5. Beumer G.J., van Blitterswijk C.A., Bakker D„ Ponec M. A new biodegradable matrix as part of a cell seeded skin substitute for the treatment of deep skin defects: a physico-chemical characterisation. Clin. Mater. 1993; 14: 21-7.
  6. Cao Y.L., Vacanti J.P., Paige K.T. et al. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered tissue in the shape of a human ear. Plast. Reconst. Surg. 1997; 100: 297-302.
  7. Chen G.P., Ushida T„ Tateishi T. Preparation of poly[L—lactic acid) and polyfo.L-lactic acid-co-glycolic acid) foams by use of ice microparticulates. Biomaterials 2001; 22: 2563.
  8. Furukawa K.S., Ushida T., Toita K. et al. Hybrid of gel-cultured smooth muscle cells with PLLA sponge as a scaffold towards blood vessel regeneration. Cell Transplant. 2002; 11: 475-80.
  9. Hutmacher D.W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000; 21: 2529-43.
  10. Langer R., Vacanti J.P. Tissue engineering. Science 1993; 60: 920-6.
  11. Mikos A., Bao Y., Cima L.G. et al. Preparation of polyfglycolic acid) bonded fiber structures for cell attachment and transplantation. J. Biomed. Mater. Res. 1993; 27: 183-9.
  12. Mikos A.G., SarakinosG., Leite S.M. et al. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 1993; 14: 323-30.
  13. Mikos A.G., Thorsen A.J., Czerwonka L.A. et al. Preparation and characterization of polyfL-lactic acid) foams. Polymer 1994; 35:1068.
  14. Mooney D.J., Mazzoni C.L., Breuer C. et al. Stabilized polyglycolic acid fibrebased tubes fortissue engineering. Biomaterials 1996; 17:115-24.
  15. Mooney D.J., Baldwin D.F., Suh N.P. et al. Novel approach to fabricate porous sponges of poly[D,L-lactic-co-glycolic acid) without the use of organic solvent. Biomaterials 1996; 17:1417-22.
  16. Thomson R.C., Yaszemski M.J., Powers J.M., Mikos A.G. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J. Biomater. Soi. Polym. Ed. 1995;7:23-38.
  17. Thomson R.C., Yaszemski M.J., Powers J.M., Mikos A.G. Hydroxyapatite fiber reinforced polyfa-hydroxy ester) foams for bone regeneration. Biomaterials 1998; 19: 1935-43.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Porous matrix made of PGLA, made in the form of an auricle

Download (25KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies