Mesenchymal Stem Cells and Immunopathologie Conditions of a Human Body

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Mesenchymal stem cells (MSC), multipotent stem cells of a grown human body are used more and more in clinical investigations. Their differentiation potential enables their application in traumatology, cardiology, neurology. However, more and more investigators consider therapeutic effectiveness of MSC transplantation proved by many preclinical and clinical studies to be due to not only differentiation but also a regulatory function of these cells. Application of MSC in immunopathologic conditions provides the opportunity to clarify their regulatory characteristics, ability to influence immune process within the body. Nowadays, there is a lot of experience of MSC usage in both different experimental models and in clinic. The present data analysis allows to discuss the influence of mesenchymal stem cells on separate parts of an immune system of the vertebrate.

Full Text

Restricted Access

About the authors

P. V. Kruglyakov

Trans-Technologies Lmd

Author for correspondence.
Email: redaktor@celltranspl.ru
Russian Federation, Saint-Petersburg

E. A. Lokhmatova

Saint-Petersburg State Pavlov University

Email: redaktor@celltranspl.ru
Russian Federation, Saint-Petersburg

V. B. Klimovich

Central Research Radiology Institute under the Federal Agency of Public Health and Social Development

Email: redaktor@celltranspl.ru
Russian Federation, Saint-Petersburg

A. Yu. Zaritsky

Saint-Petersburg State Pavlov University

Email: redaktor@celltranspl.ru
Russian Federation, Saint-Petersburg

References

  1. Friedenstein A.J., Petrakova K.V., Kurolesova A.I. et al. Heterotypic transplants of bone marrow: analysis of precursor cells for osteogenic and hematopoietic tissues. Transplant. 1968; 6: 230-47.
  2. Pittenger M.F., Mackay A.M., Beck S.C. et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284 (5411): 143-7.
  3. Muraglia A., Cancedda R., Quarto R. Clonal mesenchimal progenitors from human bone marrow differentiate in vitro according to a hierarchial model. J. Cell Sci. 2000; 113: 1161-6.
  4. Wakitani S., Saito T., Caplan A.I. Myogenic cells derieved from rat bone marrow mesenchimal stem cells exposed to 5-azacytidine. Muscle Nerve 1995; 18: 1417-26.
  5. Woodbury D., Schwarz E.J., Prockop D.J. et al. Adult rat and human bone marrow stroml cells differentiate into neurons. J. Neurosci. Res. 2000; 61: 364-70.
  6. Toma C., Pittenger M.F., Cahill K.S. et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002; 105: 93-8.
  7. Pettinger M.F., Martin B.J. Mesenchimal stem sells and their potential as cardiac therapeutics. Circ. Res. 2004; 95: 9-20.
  8. Zhao R.C., Liao L., Han Q. Mechanisms and perspectives on the mesenchimal stem cell in immunotherapy. J. Lab. Clin. Med. 2004; 143: 28491.
  9. Jorgensen C., Djouad F., Apparaily F. et al. Engineering mesenchimal stem cells for immunotherapy. Gene Therapy 2003; 10: 928-31.
  10. Noort W.A., Kruisselbrink A.B., in't Anker P.S. et al. Mesenchymal stemcells promote engraftment of human umbilical cord blood-derived CD34+ cells in NOD/SCID mice. Exp. Hematol. 2002; 30: 870-8.
  11. Koc O.N., Gerson S.L., Cooper B.W. et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J. Clin. Oncol. 2000; 18: 307-16.
  12. Wynn R.F., Hart C.A., Corradi-Perini C. et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 2004; 104(9]: 2643-5.
  13. Son B.R., Marquez-Curtis L.A., Kucia M. et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by SDF-1-CXCR4 and HGF-c-met axes and involves matrix metalloproteinases. Stem Cells 2006. [Epub ahead of print].
  14. Azizi S.A., Stokes D., Augelli B.J. et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats: similarities to astrocyte grafts. Proc. Natl. Acad. Sci. USA 1998; 95: 3908-14.
  15. Jin H.K., Carter J.E., Huntley G.W. et al. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of eurological abnormalities and extends their life span. J. Clin. Invest. 2002; 109: 1183-91.
  16. Horwitz E.M., Gordon P.L., Koo W.K. et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc. Natl. Acad. Sci. USA 2002; 99: 8932-7.
  17. Makkar R.R., Price M.J., Lill M. et al. Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. J. Cardiovasc. Pharmacol. Ther. 2005; 10(4]: 225-33.
  18. Dai W., Hale S.L., Martin B.J. et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 2005; 112(2]: 214-23.
  19. Kraitchman D.L., Tatsumi M., Gilson W.D. et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 2005; 112(10]: 1451-61.
  20. Horwitz E.M., Prockop D.J., Fitzpatrick L.A. et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 1999; 5(3]: 309-13.
  21. Horwitz E.M., Gordon P.L., Koo W.K. et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc. Natl. Acad. Sci. USA 2002; 99: 8932-7.
  22. Horwitz E.M. Marrow mesenchymal cell transplantation for genetic disorders of bone. Cytotherapy 2001 ; 3(5]: 399-401.
  23. Le Blanc K., Gotherstrom C., Ringden O. et al. Fetal mesenchymal stemcell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplant. 2005; 79(11]: 1607-14.
  24. Koc O.N., Day J., Nieder M. et al. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD] and Hurler syndrome (MPS-IH]. Bone Marrow Transplant. 2002; 30: 215-22.
  25. Fouillard L., Bensidhoum M., Bories D. et al. Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia 2003; 17: 474-6.
  26. Saito T., Kuang J.Q., Bi.ttira B. et al. Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann. Thorac. Surg. 2002; 74: 19-24.
  27. Silverstein A.M., Prendergast R.A., Kraner K.L. Fetal response to antigenic stimulus IV. Rejection of skin homografts by the fetal lamb. J. Exp. Med. 1964; 119: 955-64
  28. Liechty K.W., MacKenzie T.C., Shaaban A.F. et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 2000; 11: 1282-6.
  29. Di Nicola M., Carlo-Stella C., Magni M. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838-43.
  30. Majumdar M.K., Keane-Moore M., Buyaner D. et al. Characterization and functionality of cells surface molecules on human mesenchymal stem cell. J. Biomed. Sci. 2003; 10: 228-41.
  31. Le Blanc K., Tammik C., Rosendahl K. et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003; 31: 890-6.
  32. Tse W.T., Pendleton J.D., Beyer W.M. et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplant. 2003; 75: 389-97.
  33. Li Y., Hisha H., Inaba M. et al. Evidence for migration of donor bone marrow stromal cells into recipient thymus after bone marrow transplantation plus bone grafts: A role of stromal cells in positive selection. Exp. Hematol. 2000; 28(8): 950-60.
  34. Frassoni F.L.M., Bacigalupo A., Gluckman E. Expanded mesenchymal stem cells (MSC), coinfused with HLA identical hemopoietic stem cell transplants, reduce acute and chronic graft versus host disease: a matched pair analysis [abstract]. Bone Marrow Transplant. 2002; 29: 75.
  35. Le Blanc K., Rasmusson I., Sundberg B. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439-41.
  36. Le Blanc K., Ringden O. Use of mesenchymal stem cells for the prevention of immune complications of hematopoietic stem cell transplantation. Haematologica 2005; 90(4): 438a.
  37. Lee S.T., Jang J.H., Cheong J.W. et al. Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by coinfusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br. J. Haematol. 2002; 118: 1128-31.
  38. Lazarus H.M., Koc O.N., Devine S.M. et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood Marrow Transplant. 2005; 11(5): 389-98.
  39. Chiu R.C. Xenogeneic cell transplant: fact or fancy? Int. J. Cardiol. 2004; 95 Suppl 1: S43-44.
  40. Krampera M., Glennie S., Dyson J. et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101: 3722-9.
  41. Djouad F., Plence P., Bony C. et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102: 3837-44.
  42. Le Blanc K., Tammik C., Rosendahl K. et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003; 31: 890-6.
  43. Tse W.T., Pendleton J.D., Beyer W.M. et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplant. 2003; 75: 389-97.
  44. Bartholomew A., Sturgeon C., Siatskas M. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 2002; 30: 42-8.
  45. Plumas J., Chaperot L., Richard M.-J. et al. Mesenchimal stem cells induce apoptosis of activated T-cells. Leukemia 2005; 1 -8.
  46. Li C.D., Zhang W.Y., Li H.L. et al. Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation. Cell Res. 2005; 15(7): 539-47.
  47. Pierdomenico L., Bonsi L., Calvitti M. et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplant. 2005; 80(6): 836-42.
  48. Klyushnenkova E., Mosca J.D., Zernetkina V. et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J. Biomed. Sci.. 2005; 12(1): 47-57.
  49. Groh M.E., Maitra B., Szekely E. et al. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp. Hematol. 2005; 33(8): 928-34.
  50. Glennie S., Soeiro I., Dyson P.J. et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005; 105(7): 2821-7.
  51. Hu X., Zuckerman K.S. Cell cycle and transcriptional control of human myeloid leukemic cells by transforming growth factor beta. Leuk. Lymphoma. 2000; 38(3-4): 235-46.
  52. Augello A., Tasso R., Negrini S.M. et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur. J. Immunol. 2005; 35(5):1482-90.
  53. Aggarwal S., Pittinger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105(4): 1815-22.
  54. Rasmusson I., Ringden O., Sundberg B. et al. Mesenchimal stem cells inhibit lymphocyte proliferation by mitogens and alloantgens by different mechanisms. Experimental Cell Res. 2005; 305: 33-41.
  55. Plumas J., Chaperot L., Richard M.-J. et al. Mesenchimal stem cells induce apoptosis of activated T-cells. Leukemia 2005;1 -8.
  56. Fallarino F., Grohmann U., Vacca C. et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002; 9: 1069-77.
  57. Maccario R., Podesta M., Moretta A. et al. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 2005; 90(4): 516-25.
  58. Sotiropoulou P.A., Perez S.A., Gritzapis A.D. et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 2006; 24(1): 74-85.
  59. Spaggiari G.M., Capobianco A., Becchetti S. et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006; 107(4): 1484-90.
  60. Baxevanis C.N., Reclos G.J., Gritzapis A.D. et al. Elevated prostaglandin E2 production by monocytes is responsible for the depressed levels of natural killer and lymphokine-activated killer cell function in patients with breast cancer. Cancer 1993; 72: 491-501.
  61. Joshi P.C., Zhou X., Cuchens M. et al. Prostaglandin E2 suppressed IL-15- mediated human NK cell function through down-regulation of common g-chain. J. Immunol. 2001; 166: 885-91.
  62. Bellone G., Aste-Amezaga M., Trinchieri G. et al. Regulation of NK cell functions by TGF-b1. J. Immunol. 1995; 155: 1066-73.
  63. Rasmusson I., Ringden O., Sundberg B. et al. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplant. 2003; 76(8): 1208-13.
  64. Jiang X.X., Zhang Y., Liu B. et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105(10): 4120-6.
  65. Beyth S., Borovsky Z., Mevorach D. et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 2005; 105(5): 2214-9.
  66. Sato K., Yamashita N., Baba M. et al. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity. 2003; 18: 367-79.
  67. Corcione A., Benvenuto F., Ferretti E. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107(1): 367-72.
  68. Hu W.B., Gao Q.P., Chen Y.H. Effect of bone marrow mesenchymal stem cells on acute graft versus host disease and graft versus leukemia after allogeneic bone marrow transplantation Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2005; 13(3): 404-7.
  69. Ishida T., Inaba M., Hisha H. et al. Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune diseases in MRL/MP-Ipr/ Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor. J. Immunol. 1994; 152: 3119-27.
  70. Zappia E., Casazza S., Pedemonte E. et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005; 106: 1755-61.
  71. Uccelli A., Zappia E., Benvenuto F. et al. Stem cells in inflammatory demyelinating disorders: a dual role for immunosuppression and neuroprotection. Expert. Opin. Biol. Ther. 2006; 6(1): 17-22.
  72. Nagaya N., Kangawa K., Itoh T. et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 2005; 112(8): 1128-35.
  73. Wang J.W., Liu Y.B., Xu B. et al. The study on immunomodulation of donor mesenchymal stem cells on discordant liver xenotransplantation. Zhonghua Wai Ke Za Zhi. 2005; 43(19): 1254-8.
  74. Bacigalupo A., Valle M., Podesta M. et al. T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Exp. Hematol. 2005; 33(7): 819-27.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The effect of allogeneic MSCs on the cells of the recipient's immune system

Download (46KB)
3. Fig. 2. The effect of MSCs on the T-cell population

Download (44KB)

Copyright (c) 2006 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies