Are oval cells supposed to be liver stem cells or hepatoblasts?

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The aim of the work is to study the patterns of expression of oval cell markers during prenatal histogenesis of rat and human liver, as well as in human hepatocytes in vitro. The liver of rats was obtained at various gestation periods and during the first month after birth. Human embryos and fetuses are obtained as a result of legal medical abortions. The material was fixed and poured into paraffin according to the standard procedure or cryostatic sections were prepared, then stained with immunohistochemical indirect immunoperoxidase and streptavidin-biotin methods using commercial monoclonal antibodies to cytokeratins-7, -8, -18, -19. Gamma-glutamyl-transpeptidase was detected histochemically. The results of the studies showed that rat and human hepatoblasts express cytokeratin-19 and gamma-glutamyltrans-peptidase, whereas cholangiocytes express cytokeratin-7 (and only since the beginning of the formation of intrahepatic bile ducts). Moreover, human hepatocytes under cultivation begin to express cytokeratin-19 again. The data obtained show that the markers of oval cells (cytokeratin-19 and gamma-glutamyltranspeptidase) are markers of differentiating hepatocytes, which does not allow identifying oval cells with liver stem cells.

Full Text

Restricted Access

About the authors

А. P. Kiyasov

Kazan State Medical University

Author for correspondence.
Email: redaktor@celltranspl.ru

Department of Normal Anatomy

Russian Federation, Kazan

A. A. Gumerova

Kazan State Medical University

Email: redaktor@celltranspl.ru

Department of Normal Anatomy

Russian Federation, Kazan

M. A. Titova

Kazan State Medical University

Email: redaktor@celltranspl.ru

Department of Normal Anatomy

Russian Federation

References

  1. Wilson J.W., Leduc E.H. Role of cholangioles in restoration of the liver of the mouse after dietary injury. J. Pathol. Bacteriol. 1958; 76: 441 -9.
  2. Фактор В.М., Радаева С.А. Стволовой резерв печени. Онтогенез 1991; 22(2): 181-9.
  3. Fausto N. Oval cells and liver carcinogenesis: an analysis of cell lineages in hepatic tumors using oncogene transfection techniques. Prog. Clin. Biol. Res. 1990; 331: 325-34.
  4. Sell S. Is there a liver stem cell? Cancer Res. 1990; 50: 3811-5.
  5. Sigal S.H., Brill S., Fiorino A.S., Reid L.M. The liver as a stem cell and lineage system. Am. J. Physiol. 1992; 263: G139-48.
  6. Dabeva M.D., Shafritz D.A. Activation, proliferation, and differentiation of progenitor cells into hepatocytes in the D-galactosamine model of liver regeneration. Am. J. Pathol. 1993; 143(6): 1606-20.
  7. Урываева И.В. Модель репопуляции печени, поврежденной дипином. Бюлл. экспер. биол. мед. 1997; 124(10): 364-8.
  8. Factor V.M., Radaeva S.A., Thorgeirsson S.S. Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse. Am. J. Pathol. 1994; 145: 409-22.
  9. Braun K.M., Sandgren E.P. Cellular Origin of Regenerating Parenchyma in a Mouse Model of Severe Hepatic Injury Am. J. of Pathol. 2000; 157: 561-9
  10. Sarraf C., Lalani E.-N., Golding M. et al. Cell behavior in the acetylaminofluorene- treated regenerating rat liver. Am. J. Pathol. 1994; 145: 1114-26.
  11. Evarts R.P., Nakatsukasa H., Marsden E.R. et al. Cellular and molecular changes in the early stages of chemical hepatocarcinogenesis in the rat. Cancer Res. 1990; 50: 3439-44.
  12. Hsia C.C., Evarts R.P., Nakatsukasa H. et al. Occurrence of oval cell in hepatitis B virus associated human hepatocarcinogenesis. Hepatology 1992; 67: 427-33.
  13. Chen Y.-K., Zhao X.-X., Li J.-G. et al. Ductular proliferation in liver tissues with severe chronic hepatitis B: An immunohistochemical study. World J. Gastroenterol. 2006; 12(9): 1443-6
  14. Parent R., Marion M.J., Furio L. et al. Origin and characterization of a human bipotent liver progenitor cell line. Gastroenterology 2004; 126(4): 1147-56.
  15. He Z.P., Tan. W.G., Tang Y.F. et al. Activation, isolation, identification and in vitro proliferation of oval cells from adult rat liver. Cell Prolif. 2004; 37(2): 177-87.
  16. Crosby H.A., Kelly D.A., Strain A.J. Human hepatic stem-like cells isolated using c-kit or CD34 can differentiate into biliary epithelium. Gastroenterology 2001;120(2):534-44.
  17. Paku S., Dezso K., Kopper L., Nagy P. Immunohistochemical analysis of cytokeratin 7 expression in resting and proliferating biliary structures of rat liver. Hepatology 2005; 42(4): 863-70.
  18. Yavorkovsky L., Lai E., Ilic Z., Sell S. Participation of small intraportal stem cells in the restitutive response of the liver to portal necrosis induced by allyl alcohol. Hepatology 1995; 21: 1702-12.
  19. Hixson D.C., Faris R.A., Thompson N.L. An antigenic portrrait of the liver during carcinogenesis. Pathobiology 1990; 58: 65-77.
  20. Dunsford H.A., Sell S. Production of monoclonal antibodies to preneoplastic liver cell populations induced by chemical carcinogens in rats and to transplantable Morris Hepatomas. Cancer Res. 1989; 49: 4887-93.
  21. Engelhardt N.V., Factor V.M., Medvinsky A.L. et al. Common antigen of oval and biliary epithelial cells (A6) is a differentiation marker of epithelial and erythroid cell lineages in early development of the mouse. Differentiation 1993; 55: 19-26.
  22. Rijnties P., Moshage H., Van Gemert P. et al. Cryopreservation of adult human hepatocytes. The influence of deep freezing storage on the viability, cell seeding, survival, fine structures and albumin synthesis in prymary cultures. J. Hepatol. 1986; 3: 7-18.
  23. Moshage H., Rijnies P., Hatkenscheiol M. et al. Primary culture of cryopreserved adult human hepatocytes on homologous extracellular matrix and the influence of monocytic products on albumin synthesis. J. Hepatol. 1988; 7: 34-44.
  24. Rutenburg A.M., Kim H., Fischbein J.W. et al. Histochemical and ultrastructural demonstration of g-Glutamil transpeptidase activity. J. Histochem. Cytochem. 1969; 17: 517-26.
  25. Shiojiri N. Transient expression of bile-duct-specific cytokeratin in fetal mouse hepatocytes. Cell Tissue. Res. 1994; 278: 117-23.
  26. Bisgaard H.C., Parmelee D.C., Dunsford H.A. et al. Keratin 14 protein in cultured nonparenchymal rat hepatic epithelial cells: characterization of keratin 14 and keratin 19 as antigens for the commonly used mouse monoclonal antibody OV-6. Molec. Carcinogenesis. 1993; 7: 60-6.
  27. Van Eyken P., Desmet V. Cytokeratins and the liver. Liver 1993; 13: 113-22.
  28. Thorgeirsson S.S. Target cell populations in virus-associated hepatocarcinogenesis. Princess Takamatsu Symp. 1995; 25: 163-70.
  29. Demetris A.J., Seaberg E.C., Wennerberg A. et al. Ductular reaction after submassive necrosis in humans. Special emphasis on analysis of ductular hepatocytes. Am. J. Pathol. 1996; 149(2): 439-48.
  30. Haque S., Haruna Y., Saito K. et al. Identification of bipotential progenitor cells in human liver regeneration. Lab. Invest. 1996; 75(5): 699-705.
  31. Глейберман А.С., Трояновский С.М., Банников Г.А. Перестройка цитоскелета в гепатоцитах регенерирующей печени мышей. Бюлл. экспер. биол. мед. 1984; 12: 741-3.
  32. Notenboom R.G., De-Boer P.A., Moorman A.F., Lamers W. The establishment of the hepatic architecture is a prerequisite for the development of lobular pattern of gene expression. Development 1996; 122(1): 321-32.
  33. Pagan R., Martin I., Alonso A. et al. Vimentin filaments follow preexisting cytokeratin network during epithelial-mesenchymal transition of cultured neonatal rat hepatocytes. Exp. Cell Res. 1996; 222(2): 333-44.
  34. Киясов А.П., Гумерова А.А., Петров С.В., Яп С.Х. Реэкспрессия цитокератина-19 в первичной культуре гепатоцитов человека. Бюлл. экспер. биол. мед. 1998; 126(7): 118-20.
  35. Blaheta R.A., Kronenberger B., Woitaschek D. et al. Dedifferentiation of human hepatocytes by extracellular matrix proteins in vitro: quantitative and qualitative investigation of cytokeratin 7, 8, 18, 19 and vimentin filaments. J. Hepatol. 1998; 28(4): 677-90.
  36. Menthena 1. A., Deb N., Oertel M. et al. Bone Marrow Progenitors Are Not the Source of Expanding Oval Cells in Injured Liver Stem Cells 2004; 22: 1049-61.
  37. Paku S., Schnur J., Nagy P., Snorri S. Thorgeirsson. Origin and Structural Evolution of the Early Proliferating Oval Cells in Rat Liver Am. J. Pathol. 2001 ; 158: 1313-23.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Rat liver

Download (167KB)
3. Fig. 2. Rat liver

Download (146KB)

Copyright (c) 2006 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies