Pilot study of bone tissue reparative regeneration of the young Trachemys scripta shell



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The turtles skeleton plan is an evolutionary developmental novelty in connection with the formation of a tortoise-specific carapacial ridge, which induces the growth of ribs in the dorsal direction and the subsequent formation of several carapace plates. The bone plates of these reptiles have different histogenesis: the neural and costal plates develop according to the mechanism of indirect osteogenesis by perichondral ossification of the axial skeleton elements (vertebrae and ribs), the peripheral and plastron bones develop according to the mechanism of direct osteogenesis in the dermis of the skin - these are the so-called «skin bones», which are derived from individual osteogenic cells outside the axial skeleton and develop by intramembranous osteogenesis. An experiment was carried out to study the post-traumatic osteogenesis of the carapace bone plates on a freshwater turtles Trachemys scripta at the age of 3 months. Two defects of carapace costal plates with a diameter of 4 mm and a depth to the fascia were performed with further routine histological examination. It was found that already on the 90th day the turtles carapace bones were restored with the formation of a full-fledged bone regenerate by the mechanism of indirect osteogenesis.

Full Text

Restricted Access

About the authors

R. V Deev

I.I. MechnikovNorth-Western State Medical University

P. S Podluzhnyi

I.I. MechnikovNorth-Western State Medical University

Email: paul.podluzhny@mail.ru

S. S Galkov

I.I. MechnikovNorth-Western State Medical University

A. V Chernoraev

I.I. MechnikovNorth-Western State Medical University

References

  1. Burke A.C. Development of the turtle carapace: implications for the evolution of a novel bauplan. J. Morph. 1989; 199: 363-78.
  2. Kuraku S., Usuda R., Kuratani S. Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evol. Dev. 2005; 7: 3-17.
  3. Moustakas J.E. Development of the carapacial ridge: implications for the evolution of genetic networks in turtle shell development. Evol. Dev. 2008; 10: 29-36.
  4. Kaplinsky N.J., Gilbert S.F., Cebra-Thomas J. et al. The Embryonic Transcriptome of the Red-Eared Slider Turtle. PLoS One 2013; 8: e66357.
  5. Loredo G.A., Brukman A., Harris M.P. et al. Development of an evolutionary novel structure: fibroblast growth factor expression in the carapacial ridge of turtle embryos. J. Exp. Zool. 2001; 291(3): 274-81.
  6. Данини Е.С. Гистологические наблюдения над регенерацией кости щита черепахи Emys Orbicularis L. Изв. АН СССР. Биол. науки 1946; 5: 581-94.
  7. Sire J.Y., Kawasaki K. Origin and evolution of bone and dentin, and of their phosphorylated, acid-rich matrix proteins. In: Goldberg M. (ed.) Frontiers between science and clinic in odontology. 2012; 3-58.
  8. Румянцев А.В. Опыт исследования эволюции хрящевой и костной тканей. Изв. АН СССР. 1958.
  9. Rathke H. Ueber die Entwicklung der Schildkroten. Braunschweig: Friedrich Vieweg und Sohn 1848; 1-268.
  10. Owen R. On the development and the homologies of the carapace and plastron of the chelonian reptiles. Philos. Trans. R. Soc. Lond. 1849; 151-71.
  11. Zangerl R. The homology of the shell elements in turtles. J. Morph. 1939; 3: 383-409.
  12. Борхвардт В.Г. О природе позвоночных и реберных пластинок панциря черепах. Вестн. Ленингр. ун-та. Сер. биол. 1978; 15: 7-12.
  13. Rieppel O. Turtles as hopeful monsters. Bioessays 2001; 23: 987-91.
  14. Hirasawa T., Nagashima H., Kuratani S. The endoskeletal origin of the turtle carapace. Nat. Commun. 2013; 4: 2107.
  15. Черепанов Г.О. Панцирь черепах: происхождение и развитие в онто- и филогенезе [диссертация]. Санкт-Петербург. 2004. [Cherepanov G.O. Turtle shell: origin and development in onto- and phylogenesis [dissertation]. St. Petersburg. 2004].
  16. Gilbert S.F., Loredo G.A., Brukman A. et al. Morphogenesis of the turtle shell: the development of a novel structure in tetrapod evolution. Evol. Dev. 2001; 3(2): 47-58.
  17. Cebra-Thomas J.A., Betters E., Yin M. et al. Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta. Evol. Dev. 2007; 9(3): 267-77.
  18. Cebra-Thomas J.A., Terrell A., Branyan K. et al. Late-emigrating trunk neural crest cells in turtle embryos generate an osteogenic ectomes-enchyme in the plastron. Dev. Dyn. 2013; 242(11): 1223-35.
  19. Goldberg S., Venkatesh A., Martinez J. et al. The development of the trunk neural crest in the turtle Trachemys scripta. Dev. Dyn. 2020; 249(1): 125-40.
  20. Rice R., Kallonen A., Cebra-Thomas J.A. et al. Development of the turtle plastron, the order-defining skeletal structure. Proc. Nat. Acad. Sci. 2016; 113(19): 5317-22.
  21. Siismets E.M., Hatch N.E. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. Dev. Biol. 2020; 8(3): 18.
  22. Jamal M., Lewandowski S.L., Lawton M.L. et al. Derivation and characterization of putative craniofacial mesenchymal progenitor cells from human induced pluripotent stem cells. Stem Cell Res. 2018; 33: 100-9.
  23. Nagashima H., Shibata M., Taniguchi M. et al. Comparative study of the shell development of hard- and soft-shelled turtles. J. Anat. 2014; 225: 60-70.
  24. Hankenson K.D., Dishowitz M., Gray C. et al. Angiogenesis in bone regeneration. Injury 2011; 42(6): 556-61.
  25. Hausman M.R., Schaffler M.B., Majeska R.J. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 2001; 29(6): 560-4.
  26. Гололобов В.Г. Регенерация костной ткани при заживлении огнестрельных переломов. Санкт-Петербург: Петербург - XXI век; 1997.
  27. Seifert A.W., Voss S.R. Revisiting the relationship between regenerative ability and aging. BMC Biol. 2013; 11: 2.
  28. Ikawa H., Moroi A., Yoshizawa K. et al. Bone regeneration enhancement by ultra-violet (UV) treatment for uHA/PLLA absorbable mesh. J. Craniomaxillofac. Surg. 2017; 45(5): 634-41.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies