The adoption of expansion strategies of bone marrow derived mesenchymal stromal cells from patients with heart failure and co-morbidities

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Autologous transplantation of bone marrow derived multipotent mesenchymal stromal cells is considered as a promising treatment for cardiovascular diseases including heart failure. The phenotype of patient with heart failure changed over the last two decades: the percentage of very old individuals, and number of comorbidities increased markedly. These factors could affect the functional properties of mesenchymal stromal cells intended for autologous transplantation. In this study for a first time the functional properties of cell samples from patients with heart failure and co-morbidities (obesity and diabetes mellitus) were investigated and the possibilities to compensate for the effects of patient factors on stromal cell properties by correcting ex vivo expansion strategies were studied. 10 healthy donors, 16 with isolated heart failure, 21 with comorbid obesity, 3 with diabetes and 9 with obesity and diabetes were enrolled. Cultures were evaluated in successive passages for immunophenotype, proliferative activity (population doubling time), frequency of colony-forming units, frequency of adipo- and osteo-progenitors at different seeding density under hypoxia/normoxia. The proliferation rate of mesenchymal stromal cells from patients with heart failure and co-morbidities decreased at early passages while seeded at 3000 cells/ cm2. The cultures with low proliferation rate demonstrated senescence-associated features and low frequency of clonogenic multipotent cells. At seeding density 100 cells/ cm2 cultures maintained high proliferation rate, hypoxia enhanced this effect even further up to 17—28 in vitro population doublings. Some of the donor-specific alterations in cell sample properties could be corrected by changing of culturing strategies.

Full Text

Restricted Access

About the authors

R. I Dmitrieva

Insitute of Molecular Biology and Genetics of the Almazov Federal Heart, Blood and Endocrinology Centre, St. Petersburg

M. A Klukina

Insitute of Molecular Biology and Genetics of the Almazov Federal Heart, Blood and Endocrinology Centre, St. Petersburg

I. R Minullina

Insitute of Molecular Biology and Genetics of the Almazov Federal Heart, Blood and Endocrinology Centre, St. Petersburg

S. V Anisimov

Insitute of Molecular Biology and Genetics of the Almazov Federal Heart, Blood and Endocrinology Centre, St. Petersburg

A. Yu Zaritskey

Institute of Haematology of the Almazov Federal Heart, Blood and Endocrinology Centre, St. Petersburg

References

  1. Shabbir A., Zisa D., Suzuki G. et al. Am heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. J. Physiol. Heart. Circ. Physiol. 2009; 296: H1888-97.
  2. Trachtenberg B.,Velazquez R.N., Williams A.R. et al. Rationale and design of the transendocardial injection of autologous human cells [bone marrow or mesenchymal) in chronic ischemic left ventricular dysfunction and heart failure secondary to myocardial infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy. American Heart Journal 2011; 161(3): 487—93.
  3. Kumar М.Р. Bone marrow-derived mesenchymal stem cells for treatment of heart failure: is it all paracrine actions and immunomodulation? Cardiovascular Medicine 2008; 9(2): 122-8.
  4. Hatzistergos K.E., Quevedo H., Oskouei B.N. et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ. Res. 2010; 107: 913—22.
  5. Miyahara Y., Nagaya N.,Kataoka М. et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine 2006; 12: 459—65.
  6. Quevedoa H.C., Hatzistergosa R.E., Oskouei B.N. et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. PNAS USA 2009; 106(33): 14022-7.
  7. Hare JM., Traverse J.H., Timothy D. et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (Prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 2009; 54(24): 2277-86.
  8. Heldman A.W., Zambrano J.P., Hare JM. Cell therapy for heart disease: where are we in 2011? Am. Coll. Cardiol. 2011; 57: 466-8.
  9. Segers V.FM., Richard T. Lee R.T. Stem-cell therapy for cardiac disease. Nature 2008; 451: 937-42.
  10. Angert D., Houser S.R. Stem cell therapy for heart failure. Curr. Treat. Opt. Cardiovas. Med. 2009; 11: 316-27.
  11. Dominici М., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement Cytotherapy 2006; 8: 315-27.
  12. Giordano A., Galderisi U., Marino I.R. From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J. Cell Physiol. 2007; 211: 27—35.
  13. Preda M.B., Valen G. Evaluation of gene and cell-based therapies for cardiac regeneration. Curr. Stem Cell Res. Ther. 2013; Epub ahead of print.
  14. Amado L.C., Saliaris A.P., Schuleri K.H. et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. PNAS USA 2005; 102: 11474—9.
  15. Shabbir A., Zisa D., Leiker M. et al. Muscular dystrophy therapy by non-autologous mesenchymal stem cells: muscle regeneration without immunosuppression and inflammation. Transplantation 2009; 87(9): 1275-82.
  16. Tyndall A., Walker U.A., Cope A. et al. Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK. Arthritis Res. Ther. 2007; 9: 301.
  17. Hare J.M., Traverse J.H., Henry T.D. et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol. 2009; 54: 2277-86.
  18. Wong C.Y., Sarwat I. Chaudhry S.I., Desai M.M. et al. Trends in comorbidity, disability, and polypharmacy in heart failure. Am. J. Med. 2011; 124: 136-43.
  19. Stolzing A., Jones E., McGonagle D. et al. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of Ageing and Development 2008; 129: 163-73.
  20. Bork S., Pfister S., Witt H. et al., DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 2010; 9(1): 54-63.
  21. Pittenger M.F., Mackay A.M., Beck S.C. et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999; 284: 143-7.
  22. Cristofalo V.J., Allen R.G., Pignolo R.J. et al. Relationship between donor age and the replicative lifespan of human cells in culture: A reevaluation. PNAS USA 1998; 95(18): 10614-9.
  23. Mitchell J.B., Mcintosh K., Zvonic S. et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006; 24: 376-85.
  24. Bianco P., Robey, P.G. Skeletal stem cells. In: R.P. Lanza, editor. Handbook of adult and fetal stem cells. San Diego, CA: Academic Press, 2004: 415-24.
  25. Wagner W., Horn P., Castoldi M. et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PloS ONE 2008; 3(5): e2213.
  26. Bianco P., Robey P.G., Simmons P.J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008; 2(4): 313-9.
  27. Fossett E., W. S. Khan W.S. Optimising human mesenchymal stem cell numbers for clinical application: a literature review. Stem Cells International 2012; Article iD 465259, 5 pages. Published online 2012 January 31.
  28. Fossett E., Khan W.S., Longo U.G. et al. Effect of age and gender on cell proliferation and cell surface characterization of synovial fat pad derived mesenchymal stem cells. J. Orthop. Res. 2012; 30(7): 1013-8.
  29. Tsai C.C., Chen Y.J., Yew T.L. et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 2011; 117(2): 459-69.
  30. Both S.K., Van der Muijsenberg A.J., van Blitterswijk C.A. et al. A rapid and efficient method for expansion of human mesenchymal stem cells. Tissue Eng. 2007; 13: 3-9.
  31. Colter D.C., Class R., DiGirolamo C.M. et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. PNAS USA 2000; 97: 3213.
  32. Gregory C.A., Singh H., Perry,A.S. et al. The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J. Biol. Chem. 2003; 278: 28067.
  33. De Boer J., Wang H.J., Van Blitterswijk C. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng. 2004; 10: 393.
  34. Valorani M.G., Montelatici E., Germani A. et al. Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials. Cell Prolif. 2012; 45; 225-38.
  35. Жамбалова А.П., Гершович Ю.Г., Буравкова Л.Б. и др. Влияние пониженного содержания кислорода на дифференциров-ку мезенхимальных стромальных клеток костного мозга человека in vitro. Клеточная трансплантология и тканевая инженерия 2009; IV(3): 47-51.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies