Directed myogenic reprogramming of differentiated cells

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A morphological manifestation of myopathies is progressive lesion of muscular tissue with it substitution by connective tissue which makes it necessary to compensate cell loss. To date, methods which can replenish a cell pool in an affected muscle are absent. A method which potentially can correct manifestations of such diseases is a direct cell reprogramming. The undoubted advantage of this approach is an absence of necessity of returning cell in a pluripotent stage which allows to use it in vivo. The great experience in myogenic conversion was accumulated since discovering this method in 1987 by R.L. Davis and H.M. Weintraub. This review is aimed to describe the fundamental bases of direct cell reprogramming, it's positioning in the system of cell fate routes, analysis of achievements in direct cell reprogramming field and discussion about unsolved issues.

Full Text

Restricted Access

About the authors

F. A Indeikin

Kazan State Medical University

Email: f.indeickin@yandex.ru

M. O Mavlikeev

Kazan (Volga region) Federal University

R. V Deev

PJSC «Human Stem Cells Institute»; I.P. Pavlov Ryazan State Medical University

References

  1. Shen C.N., Burke Z.D., Tosh D. Transdifferentiation, metaplasia and tissue regeneration. Organogenesis 2004; 1(2): 36-44.
  2. Prasad A., Teh D.B., Shah Jahan F.R. et al. Direct conversion through trans-differentiation: efficacy and safety. Stem Cells Dev. 2017; 26(3): 154-65.
  3. Graf T., Enver T. Forcing cells to change lineages. Nature 2009; 462(7273): 587-94.
  4. Piraino S., Boero F., Aeschbach B. et. al. Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biol. Bull. 1996; 190(3): 302-12.
  5. Davis R.L., Weintraub H., Lassar A.B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987; 51(6): 987-1000.
  6. Деев Р.В., Мавликеев М.О., Бозо И.Я. и др. Генно-клеточная терапия наследственных заболеваний мышечной системы: современное состояние вопроса. Гены и клетки 2014; IX(4): 6-33.
  7. Kinter J., Sinnreich M. Molecular targets to treat muscular dystrophies. Swiss Med. Wkly. 2014; 144: w13916.
  8. Miller J.B., Girgenrath M. The role of apoptosis in neuromuscular diseases and prospects for anti-apoptosis therapy. Trends Mol. Med. 2006; 12(6): 279-86.
  9. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
  10. Darabi R., Pan W., Bosnakovski D. et al. Functional myogenic engraftment from mouse iPS cells. Stem Cell Rev. 2011; 7(4): 948-57.
  11. Darabi R., Arpke R.W., Irion S. et al. Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 2012; 10(5): 610-9.
  12. Goudenege S., Lebel C., Huot N.B. et al. Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. Mol. Ther. 2012; 20(11): 2153-67.
  13. Youssef A.A., Ross E.G., Bolli R. et al. The promise and challenge of induced pluripotent stem cells for cardiovascular applications. JACC Basic Transl. Sci. 2016; 1(6): 510-23.
  14. Caiazzo M., Giannelli S., Valente P. et al. Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Reports 2015; 4(1): 25-36.
  15. Fu J.D., Srivastava D. Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine. Circ. J. 2015; 79(2): 245-54.
  16. Wapinski O.L., Vierbuchen T., Qu K. et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 2013; 155(3): 621-35.
  17. Boularaoui S.M., Abdel-Raouf K.M.A., Alwahab N.S.A. et al. Efficient transdifferentiation of human dermal fibroblasts into skeletal muscle. J. Tissue Eng. Regen. Med. 2018; 12(2): e918-36.
  18. Ito N., Kii I., Shimizu N. et al. Direct reprogramming of fibroblasts into skeletal muscle progenitor cells by transcription factors enriched in undifferentiated subpopulation of satellite cells. Sci. Rep. 2017; 7(1): 8097.
  19. Lattanzi L., Salvatori G., Coletta M. et al. High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies. J. Clin. Invest. 1998; 101(10): 2119-28.
  20. Zhu S., Russ H.A., Wang X. et al. Human pancreatic beta-like cells converted from fibroblasts. Nat. Commun. 2016; 7: 10080.
  21. De la Rosa M.B., Sharma A.D., Mallapragada S.K. et al. Transdifferentiation of brain-derived neurotrophic factor (BDNF)-secreting mesenchymal stem cells significantly enhance BDNF secretion and Schwann cell marker. J. Biosci. Bioeng. 2017; 124(5): 572-82.
  22. Ieda M., Fu J.D., Delgado-Olguin P. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142(3): 375-86.
  23. Qian L., Yu Huang C., Ian Spencer et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012; 485(7400): 593-8.
  24. Song K., Nam Y.J., Luo X. et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 2012; 485(7400): 599-604.
  25. https://www.nature.com/subjects/reprogramming.
  26. Mall M., Wernig M. The novel tool of cell reprogramming for applications in molecular medicine. J. Mol. Med. (Berl.) 2017; 95(7): 695-703.
  27. Cai S.A., Fu X., Sheng Z. Dedifferentiation: a new approach in stem cell research. BioScience 2007; 57(8): 655-62.
  28. Jiang M., Li H., Zhang Y. et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature 2017; 550(7677): 529-33.
  29. Shields H.M., Zwas F., Antonioli D.A. et al. Detection by scanning electron microscopy of a distinctive esophageal surface cell at the junction of squamous and Barrett's epithelium. Digestive Diseases and Sci. 1993; 38(1) 97-108.
  30. Rigden H.M., Alias A., Havelock T. et al. Squamous metaplasia is increased in the bronchial epithelium of smokers with chronic obstructive pulmonary disease. PLoS One 2016; 11(5): e0156009.
  31. Русакова С.Э., Бирина В.В., Камардин Е.В. Мезенхима, эпителии и «эпителиально-мезенхимальные переходы». В кн.: Вопросы морфологии XXI века 2018; 5: 40-4.
  32. Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009; 119(6): 1420-8.
  33. Lamouille S., Xu J., Derynck R. Molecular mechanisms of epithelialmesenchymal transition. Nat. Rev. Mol. Cell. Biol. 2014;15(3): 178-96.
  34. Русакова С.Э., Бирина В.В., Камардин Е.В. Мезенхима, эпителии и «эпителиально-мезенхимальные переходы». В кн.: Вопросы морфологии XXI века. Вып. 5. - СПб.: Из-во «дЕаН», 2018: 40-6.
  35. Ekblom P. Developmentally regulated conversion of mesenchyme to epithelium. FASEB J. 1989; 3(10): 2141-50.
  36. Zaret K.S., Carroll J.S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 2011; 25(21): 2227-41.
  37. Данилов Р.К. ред. Руководство по гистологии. Санкт-Петербург: СпецЛит; 2010.
  38. Копанцева Е.Е., Белявский А.В. Регуляторы скелетно-мышечного миогенеза. Молекулярная биология 2016; 50(2): 195-222.
  39. Coll-Bonfill N., Melina M.M., Victor I. et al. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodeling. Am. J. Stem Cells 2015; 4(1): 13-21.
  40. Komuta Y., Ishii T., Kaneda M. et al. In vitro transdifferentiation of human peripheral blood mononuclear cells to photoreceptor-like cells. Biol. Open 2016; 5(6): 709-19.
  41. Hong X., Margariti A., Le Bras A. et al. Transdifferentiated Human Vascular Smooth Muscle Cells are a New Potential Cell Source for Endothelial Regeneration. Sci. Rep. 2017; 7(1): 5590.
  42. Darvishi M., Tiraihi T., Mesbah-Namin S.A. et al. Motor neuron Transdifferentiation of neural stem cell from adipose-derived stem cell characterized by differential gene expression. Cell Mol. Neurobiol. 2017; 37(2): 275-89.
  43. Shi J.G., Fu W.J., Wang X.X. et al. Transdifferentiation of human adipose-derived stem cells into urothelial cells: potential for urinary tract tissue engineering. Cell Tissue Res. s2012; 347(3): 737-46.
  44. Lue J., Lin G, Ning H, et al. Transdifferentiation of adipose-derived stem cells into hepatocytes: a new approach. Liver Int. 2010; 30(6): 913-22.
  45. Chavez-Munoz C., Nguyen K.T., Xu W. et al. Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis. PLoS One 2013; 8(12): e80587.
  46. Kabadi A.M., Thakore P.I., Vockley C.M. et al. Enhanced MyoD-Induced Transdifferentiation to a Myogenic Lineage by Fusion to a Potent Transactivation Domain. ACS Synth. Biol. 2015; 4(6): 689-99.
  47. Bo R.D., Torrente Y., Corti S. et al. In vitro and in vivo tetracyclinecontrolled myogenic conversion of NIH-3T3 cells: evidence of programmed cell death after muscle cell transplantation. Cell Transpl. 2001; 10: 209-21.
  48. Wang C., Liu W., Nie Y. et al. Loss of MyoD promotes fate transdifferentiation of myoblasts into brown adipocytes. EBioMedicine 2017; 16: 212-23.
  49. Liu Z., Fan H., Li Y. et al. Experimental Studies on the Differentiation of Fibroblasts into Myoblasts induced by MyoD Genes in vitro. Int. J. Biomed. Sci. 2008; 4(1): 14-9.
  50. Nayerossadat N., Maedeh T., Ali P.A. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res. 2012; 1: 27.
  51. Ramamoorth M., Narvekar A. Nonviral vectors in gene therapyan overview. J. Clin. Diagn. Res. 2015; 9(1): GE01-6.
  52. Bichsel C., Neeld D., Hamazaki T. et al. Direct reprogramming of fibroblasts to myocytes via bacterial injection of MyoD protein. Cell Reprogram. 2013; 15(2): 117-25.
  53. Kaur K., Yang J., Eisenberg C.A. et al. 5-azacytidine promotes the transdifferentiation of cardiac cells to skeletal myocytes. Cell Reprogram. 2014; 16(5): 324-30.
  54. Jeong H., Lee J.Y., Jang E.J. et al. Hesperedin promotes MyoD-induced myogenic differentiation in vitro and in vivo. Br. J. Pharmacol. 2011; 163(3): 598-608.
  55. Becher U.M., Breitbach M., Sasse P. et al. Enrichment and terminal differentiation of striated muscle progenitors in vitro. Exp. Cell Res. 2009; 315(16): 2741-51.
  56. Manandhar D., Song L., Kabadi A. et al. Incomplete MyoD-induced transdifferentiation is associated with chromatin remodeling deficiencies. Nucleic Acids Res. 201; 45(20): 11684-99.
  57. Furlan A., Lübke M., Adameyko I. et al. The transcription factor Hmx1 and growth factor receptor activities control sympathetic neurons diversification. EMBO J. 2013; 32(11): 1613-25.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies