Fascaplysinis a promising agent for the creation of new treatments' methods of glial brain tumors



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The effectiveness of glial brain tumors treatment remains low. Standard treatments do not provide a radical removal of tumor cells infiltrating the brain substance. One solution to this problem is to find new compounds with high anti-tumor activity and the methods' development of targeted delivery. Our attention was drawn to a group of compounds, which are based on pentacyclic system of pyrido[1,2-a: 3,4-b'] diindols. The most famous representative is fascaplysin. It is the first substance isolated from a marine sponge Fascaplysynopsis sp. The objective was to explore the characteristics and mechanisms of the cytotoxic and cytostatic effect of fascaplysin on C6 glioma cells in vitro, and to compare the effectiveness fascaplysin and temozolomide in vitro and in a targeted delivery to the tumor in vivo. We used techniques: mammalian cell cultures, high-performance robotic quantitative microscopy, confocal laser fluorescence microscopy, flow cytometry, modeling of glioblastoma in vivo, pharmacological testing, magnetic resonance imaging. It is shown that fascaplysin induces apoptosis in C6 glioma cells. At a concentration of 2 uMfascaplysin was more effective than the temozolomide. Decrease of concentration below 0.5 uM resulted to reduction of cytotoxic effects. The severity of cytostatic effect increased with increasing exposure time. Targeted delivery the fascaplysin to the tumor using transport capacity of stem cells increased the lifespan of rats and decrease in tumor size.

Full Text

Restricted Access

About the authors

I. S Bryukhovetskiy

School of Biomedicine, Far Eastern Federal University;A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the RAS.

Vladivostok, Russia

M. E Zhidkov

School of Biomedicine, Far Eastern Federal University.

Vladivostok, Russia.

I. V Kudryavtsev

School of Biomedicine, Far Eastern Federal University.

Vladivostok, Russia.

A. V Polevshikov

School of Biomedicine, Far Eastern Federal University.

Vladivostok, Russia.

P. V Mishchenko

A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the RAS;School of Biomedicine, Far Eastern Federal University

Vladivostok, Russia

E. V Milkina

A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the RAS;School of Biomedicine, Far Eastern Federal University

Vladivostok, Russia

A. S Bryukhovetskiy

School of Biomedicine, Far Eastern Federal University

Vladivostok, Russia

S. V Zaitsev

School of Biomedicine, Far Eastern Federal University

Vladivostok, Russia

IA. A Lyahova

School of Biomedicine, Far Eastern Federal University

Vladivostok, Russia

V. V Vikhareva

School of Biomedicine, Far Eastern Federal University

Vladivostok, Russia

Yu. S Khotimchenko

A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the RAS; School of Biomedicine, Far Eastern Federal University

Vladivostok, Russia

References

  1. Omuro A., DeAngeles L.M. Glioblastoma and others malignant gliomas: a clinical review. JAMA 2013; 310(17): 1842-50.
  2. Коновалов А.Н., Потапов А.А., Лошаков В.А. и соавт. Стандарты, опции и рекомендации в лечении опухолей ЦНС. Ассоциация нейрохирургов. 2009.
  3. Stupp R., Taillibert S., Kanner A.A. et al. Maintenance therapy with tumor-treating fields plus temozolomidevs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 2015; 314(23): 2535-43.
  4. Lee Y., Dominy J.E., Choi Y.J. et al. Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 2014; 510(7506): 547-51.
  5. Gayek A.S., Ohi R. CDK-1 Inhibition in G2 Stabilizes Kinetochore-Microtubules in the following Mitosis. PLoS One 2016; 11(6): e0157491.
  6. BryukhovetskiyI., Bryukhovetskiy A., Khotimchenko Y. et al. Novel cellular and post-genomic technologies in the treatment of glioblastoma multiforme. Oncol. Rep. 2016; 35(2): 639-48.
  7. Брюховецкий И.С., Мищенко П.В., Толок Е.В. и др. Взаимодействие гемопоэтических стволовых и опухолевых клеток in vitro. Тихоокеанский медицинский журнал 2014; 4: 31-7.
  8. Bryukhovetskiy A., Shevchenko V., Kovalev S. et al. To the novel paradigm of proteome-based cell therapy of tumors: through comparative proteome mapping of tumor stem cells and tissue-specific stem cells of humans. Cell Transplant. 2014; 23 Suppl 1: 151-7.
  9. Пальцев М.А., Иванов А.А., Северин С.Е. Межклеточное взаимодействие. М.: Медицина; 2003.
  10. Ahn S.Y., Chang Y.S., Sung D.K. et al. Pivotal role of brain derived neurotrophic factor secreted by mesenchymal stem cells in severe intraventricular hemorrhage in the newborn rats. Cell Transplant. 2016 Aug 16 [Epub ahead of print].
  11. Chang Y.S., Ahn S.Y., Jeon H.B. et al. Critical role of vascular endothelial growth factor secreted by mesenchymal stem cells in hyperoxic lung injury. Am. J. Respir. Cell Mol. Biol. 2014; 51(3): 391-9.
  12. Yamanaka S. Shinya Yamanaka: purveyor of pluripotency. Interview by Ruth Williams. Circ. Res. 2013; 112(2): 233-5.
  13. Bharate S.B., Manda S., Mupparapu N. et al. Chemistry and biology of fascaplisin a potent marine derived CDK-4 inhibitor. Mini Rev. Med. Chem. 2012; 12(7): 650-64.
  14. Shafiq M.I., Steinbrecher T., Schmid R. Fascaplysin as a specific inhibitor for CDK4: insights from molecular modelling. PLoS One 2012; 7(8): e42612.
  15. Aubry C., Wilson A.J., Jenkins P.R. et al. Design, synthesis and biological activity of new CDK4-specific inhibitors, based on fascaplysin. Chem. Commun. (Camb.) 2004; (15): 1696-7.
  16. Hirst T.C., Vesterinen H.M., Sena E.S. et al. Systematic review and meta-analysis of temozolomide in animal models of glioma: was clinical efficacy predicted? Br. J. Cancer 2013; 108(1): 64-71.
  17. Zhidkov M.E., Kaminskii V.A. A new method for the synthesis of marine alkaloid fascaplysin based on the microwave-assisted Minisci reaction. Tetrahedron Letters 2013; 54: 3530-2.
  18. ATCC [US]. Primary Bone Marrow CD34+ Cells, Normal, Human. ATCC® PCS-800-012, https://www.atcc.org/Products/All/ PCS-800-012.aspx?geo_country=+ru# documentation.
  19. Aboody K.S., Najbauer J., Metz M.Z. et al. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci. Transl. Med. 2013; 5(184): 184ra59.
  20. Чехонин В.П., Брюховецкий А.С, Семенова А.В. и др. Противоопухолевое средство на основе иммунолипосомальной биологической конструкции, способ его получения и векторной доставки в центральную нервную систему при опухолевом процессе. Патент РФ на изобр. №2336901. 27 октября 2008.
  21. Kim S.S., Rait A., Kim E. et al. A nanoparticle carrying the p53 gene targets tumors including cancer stem cells sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano 2014; 8(6): 5494-514.
  22. Wei J., Yang Y., Lu M. et al. Escape, or vanish: control the fate of p53 through MDM2-mediated ubiquitination. Anticancer Agents Med. Chem. 2015; 16 (2): 174-89.
  23. Jin X., Jin X., Jung J.E. et al. Cell surface Nestin is a biomarker for glioma stem cells. Biochem. Biophys. Res. Commun. 2013; 433(4): 496-501.
  24. Neradil J., Veselska R. Nestin as a marker of cancer stem cells. Cancer Sci. 2015; 106(7): 803-11.
  25. Brown D.V., Daniel P.M., D'Abaco G.M. et al. Coexpression analysis of CD133 and CD44 identifies proneural and mesenchymal subtypes of glioblastomamultiforme. Oncotarget 2015; 6(8): 6267-80.
  26. ATCC [US]. C6 Cells, glioma, rat. ATCC® CCL-107, https://www.lgcstandards-atcc.org/Products/All/CCL-107.aspx# characteristics.
  27. Shen G., Shen F., Shi Z. et al. Identification of cancer stem-like cells in the C6 glioma cell line and the limitation of current identification methods. In Vitro Cell Dev. Biol. Anim. 2008; 44(7): 280-9.
  28. Hamilton G. Cytotoxic effects of fascaplysin against small cell lung cancer cell lines. Mar. Drugs 2014; 12(3): 1377-89.
  29. Meng X.G., Yue S.W. Dexamethasone disrupts cytoskeleton organization and migration of T47D Human breast cancer cells by modulating the AKT/mTOR/RhoA pathway. Asian Pac. J. Cancer Prev. 2014; 15(23): 10245-50.
  30. Pitter K.L., Tamagno I., Alikhanyan K. et al. Corticosteroids compromise survival in glioblastoma. Brain 2016; 139(Pt. 5): 1458-71.
  31. Kuzmich A.S., Fedorov S.N., Shastina V.V. et al. The anticancer activity of 3- and 10-bromofascaplysins is mediated by caspase-8, -9, -3-dependent apoptosis. Bioorg. Med. Chem. 2010; 18(11): 3834-40.
  32. Lu X.L., Zheng Y.L., Chen H.M. et al. Anti-proliferation of human cervical cancer HeLa cell line by fascaplysin through apoptosis induction. Acta Pharmacevtica Sinica 2009; 44(9): 980-6.
  33. Ehtesham M., Kabos P., Gutierrez M.A. et al. Induction of glioma apoptosis using neural stem cell-mediated of tumor necrosis factor-related apoptosis-inducing ligand. Cancer research 2002; 62(24): 1770-4.
  34. Frank R.T., Najbauer J., Aboody K.S. Concise review: stem cells as an emerging platform for antibody therapy of cancer. Stem cells 2010; 28(11): 2084-7.
  35. Haley B., Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urologic oncology 2008; 26(1): 57-64.
  36. Kanojia D., Balyasnikova I.V., Morshed R.A. Neural stem cells secreting anti-HER2 antibody improve survival in a preclinical model of HER2 overexpressing breast cancer brain metastases. Stem Cells 2015; 33(10): 2985-94.
  37. Брюховецкий И.С., Мищенко П.В., Толок Е.В. и др. Гемопоэтические стволовые клетки с индуцированным апоптозом эффективно подавляют рост клеток глиомы invitro, но запускают механизм образования опухолевых стволовых клеток. Гены и клетки 2014; IX(4): 70-5.
  38. Bryukhovetskiy I., Bryukhovetsky A., Khotimchenko Y. et al. Combination of the multipotentmesenchymal stromal cell transplantation with administration of temozolomide increases survival of rats with experimental glioblastoma. Mol. Med. Rep. 2015; 12(2): 2828-34.
  39. Брюховецкий А.С. Клеточные технологии в нейроонкологии: циторегуляторная терапия глиальных опухолей головного мозга. М.: Издательская группа РОНЦ; 2011.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies