Development of tissue-engineered chitosan-polycaprolactone blends for vascular surgery



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Tissue engineering provides the opportunity to minimize some possible negative results of the synthetic vascular grafts in long-term follow-up. The choice of the optimal scaffold and cell source for seeding are key conditions to bring properties of vessel substitute to physiological. In some works it is shown that a chitosan-polycaprolactone blend is a suitable biodegradable material for tissue engineering. In this paper we suggest an efficient method to generate of tissue-engineered chitosan-polycaprolactone blends, cellularized by endothelial cells of human cardiac explants. The cells cultured on the blended membranes retain their functional properties: viability and proliferative properties; maintain specific endothelial antigens and synthesis of extracellular matrix. These results suggested that tissue-engineered chitosan-polycaprolactone blends seeded by endothelial cells of human cardiac explants may be potential to development of substitutes for small diameter blood vessels.

Full Text

Restricted Access

About the authors

I. S Zakharova

E.N. Meshalkin Siberian Federal Biomedical Research Center;Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the RAS; Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the RAS.

Novosibirsk, Russia

A. M Smirnova

Novosibirsk State University;Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the RAS;E.N. Meshalkin Siberian Federal Biomedical Research Center.

Novosibirsk, Russia

M. K Zhiven'

E.N. Meshalkin Siberian Federal Biomedical Research Center;Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the RAS;Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the RAS.

Novosibirsk, Russia

Sh. B Saaya

E.N. Meshalkin Siberian Federal Biomedical Research Center.

Новосибирск, Россия.

A. I Shevchenko

Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the RAS;Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the RAS;E.N. Meshalkin Siberian Federal Biomedical Research Center; Novosibirsk State University.

Novosibirsk, Russia

S. M Zakian

Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the RAS;Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the RAS;E.N. Meshalkin Siberian Federal Biomedical Research Center; Novosibirsk State University.

Novosibirsk, Russia

L. N Ivanova

Novosibirsk State University; Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the RAS.

Novosibirsk, Russia

References

  1. G N., Tan A., Gundogan B. et al. Tissue engineering vascular grafts a fortiori: looking back and going forward. Expert. Opin. Biol. Ther. 2015; 15(2): 231-44.
  2. Tara S., Rocco K.A., Hibino N. et al. Vessel bioengineering. Circ. J. 2014; 78(1): 12-9.
  3. Wang T.J., Wang I.J., Lu J.N. et al. Novel chitosan-polycaprolactone blends as potential scaffold and carrier for corneal endothelial transplantation. Mol. Vis. 2012; 18: 255-64.
  4. Garcia Cruz D.M., Gomez Ribelles J.L., Salmeron Sanchez M. Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends. J. Biomed. Mater. Res. B. Appl. Biomater. 2008; 85(2): 303-13.
  5. Sarasam A., Madihally S.V. Characterization of chitosan-polycaprolactone blends for tissue engineering applications. Biomaterials 2005; 26(27): 5500-8.
  6. Young T.H., Wang I.J., Hu F.R. et al. Fabrication of a bioengineered corneal endothelial cell sheet using chitosan/polycaprolactone blend membranes. Colloids Surf. B. Biointerfaces 2014; 116: 403-10.
  7. He Q., Ao Q., Gong Y. et al. Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility. J. Mater. Sci. Mater. Med. 2011; 22(12): 2791-802.
  8. Zhou M., Qiao W., Liu Z. et al. Development and in vivo evaluation of small-diameter vascular grafts engineered by outgrowth endothelial
  9. Wang H., Zhou J., Liu Z. et al. Injectable cardiac tissue engineering for the treatment of myocardial infarction. J. Cell. Mol. Med. 2010; 14(5): 1044-55.
  10. Захарова И.С., Живень М.К., Саая Ш.Б. и др. Разработка клеточных технологий для создания клеточно-наполненных сосудистых трансплантатов. Патология кровообращения и кардиохирургия 2015; 19(4-2): 43-54.
  11. Coimbra P., Ferreira P., de Sousa H.C. et al. Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Int. J. Biol. Macromol. 2011; 48(1): 112-8.
  12. Thuaksuban N., Nuntanaranont T., Pattanachot W. et al. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomed. Mater. 2011; 6(1): 015009.
  13. Thuaksuban N., Nuntanaranont T., Suttapreyasri S. et al. Biomechanical properties of novel biodegradable poly e-caprolactone-chitosan scaffolds. J. Investig. Clin. Dent. 2013; 4(1): 26-33.
  14. Yang W., Fu J., Wang D. et al. Study on chitosan/ polycaprolactone blending vascular scaffolds by electrospinning. J. Biomed. Nanotechnol. 2010; 6(3): 254-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies