Site-specific genome editing for hematopoetic stem cells transplantation-based gene therapy approaches



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Allogeneic hematopoietic stem cell transplantation (HSCT) remains the sole universal curative approach for a number of hereditary diseases, such as severe combined immunodeficiency (SCID), severe non-SCID primary immunodeficiencies (non-SCID PID), hematologic diseases and part of lysosomal storage disorders. Unfortunately, to date, HSCT remains a high-risk procedure, especially in cases of poor performance status of the patient and lack of HLA-matched related donors. In those cases the correction of the patients autologous HSCs with gene therapy could be a promising alternative. Current paradigm of HSCT-based gene therapy approaches is based on the utilization of viral vectors, which may lead to the severe complications due to insertion mutagenesis. Throughout the last several years, new technologies of site-specific genome editing with endonucleases such as ZFNs, TALENs, and CRISPR/Cas9 were introduced. These enzymes may induce a DNA doublestranded break, homology-directed repair and insertion of functional copy of gene in precisely targeted locus. This review focuses on the advantages and disadvantages of the genome editing tools utilization that carries the great potential of changing the paradigm of gene therapy in the setting of HSCT.

Full Text

Restricted Access

About the authors

K. V Lepik

R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation

Saint-Petersburg, Russia

M. O Popova

R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation

Email: marina.popova.spb@gmail.com
Saint-Petersburg, Russia

A. I Shakirova

R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation

Saint-Petersburg, Russia

V. S Sergeev

R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation

Saint-Petersburg, Russia

A. Y Potter

R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation

Saint-Petersburg, Russia

I. M Barkhatov

R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation

Saint-Petersburg, Russia

B. Fehse

R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation; University Medical Center (UKE] Hamburg-Eppendorf

Saint-Petersburg, Russia; Hamburg, Germany

B. V Afanasyev

R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation

Saint-Petersburg, Russia

References

  1. Passweg J.R., Baldomero H., Bader P. et al. Hematopoietic stem cell transplantation in Europe 2014: more than 40000 transplants annually. Bone Marrow Transplantation 2016 10.1038/ bmt.2016.20 [Epub ahead of print].
  2. Pai S.Y., Cowan M.J. Stem cell transplantation for primary immunodeficiency diseases: the North American experience. Curr. Opin. Allergy Clin. Immunol. 2014; 14(6): 521-6.
  3. Steward C.G., Jarisch A. Haemopoietic stem cell transplantation for genetic disorders. Arch. Dis. Child. 2005; 90: 1259-63.
  4. Pingali S.R., Champlin R.E. Pushing the envelope-nonmyeloablative and reduced intensity preparative regimens for allogeneic hematopoietic transplantation. Bone Marrow Transplant. 2015; 50(9): 1157-67.
  5. Buckley R.H. Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: long term outcomes. Immunol. Res. 2011; 49(1-3): 25-43.
  6. Pai S.Y., Logan B.R., Griffith L.M. et al. Transplantation outcomes for severe combined immunodeficiency, 2000-2009. N. Engl. J. Med. 2014; 371(5): 434-46.
  7. Schuetz C., Neven B., Dvorak C.C. et al. SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood 2014; 123(2): 281-9.
  8. Gennery A.R., Slatter M.A., Grandin L. et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better? J. Allergy Clin. Immunol. 2010; 126(3): e1-11.
  9. Antoine C., Muller S., Cant A. et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968-99. Lancet 2003; 361(9357): 553-60.
  10. Buckley R.H., Schiff S.E., Schiff R.I. et al. Hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N. Engl. J. Med. 1999; 340(7): 508-16.
  11. Horn B., Cowan M.J. Unresolved issues in hematopoietic stem cell transplantation for severe combined immunodeficiency: need for safer conditioning and reduced late effects. J. Allergy Clin. Immunol. 2013; 131(5): 1306-11.
  12. Dvorak C.C., Hassan A., Slatter M.A. et al. Comparison of outcomes of hematopoietic stem cell transplantation without chemotherapy conditioning by using matched sibling and unrelated donors for treatment of severe combined immunodeficiency. J. Allergy Clin. Immunol. 2014; 134(4): 935.e-43.e.
  13. Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 88(5466): 669-72.
  14. Hacein-Bey-Abina S., Hauer J., Lim A. et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 2010; 363(4): 355-64.
  15. Gaspar H.B., Cooray S., Gilmour K.C. et al. Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency. Sci. Transl. Med. 2011; 3(97): 97-79.
  16. Blaese R.M., Culver K.W., Miller A.D. et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 1995; 270(5235): 475-80.
  17. Aiuti A., Cattaneo F., Galimberti S. et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N. Engl. J. Med. 2009; 360(5): 447-58.
  18. Aiuti A., Slavin S., Aker M. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296(5577): 2410-3.
  19. Kohn D.B., Weinberg K.I., Nolta J.A. et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat. Med. 1995; 1(10):1017-23.
  20. Gaspar H.B., Cooray S., Gilmour K.C. et al. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci. Transl. Med. 2011; 3(97): 97ra80.
  21. Moratto D., Giliani S., Bonfim C. et al. Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980-2009: an international collaborative study. Blood 2011; 118(6): 1675-84.
  22. Boztug K., Schmidt M., Schwarzer A. et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N. Engl. J. Med 2010; 363(20): 1918-27.
  23. Hacein-Bey-Abina S., Garrigue A., Wang G.P. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 2008; 118: 3132-42.
  24. Mitchell R.S., Beitzel B.F., Schroder A.R. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2004; 2(8): E234.
  25. Montini E., Cesana D., Schmidt M. et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat. Biotechnol. 2006; 24(6): 687-96.
  26. Montini E., Cesana D., Schmidt M. et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J. Clin. Invest. 2009; 119(4): 964-75.
  27. Biffi A., Bartolomae C.C., Cesana D. et al. Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 2011; 117(20): 5332-9.
  28. Naldini L. Ex vivo gene transfer and correction for cell-based therapies. Nat. Rev. Genet. 2011; 12(5): 301-15.
  29. Urnov F.D., Rebar E.J., Holmes M.C. et al. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010; 11(9): 636-46.
  30. Maeder M.L., Thibodeau-Beganny S., Sander J.D. 0ligomerized pool engineering (0PEN): an 'open-source' protocol for making customized zinc-finger arrays. Nat. Protoc. 2009; 4(10): 1471-501.
  31. Maeder M.L., Thibodeau-Beganny S., 0siak A. et al. Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 2008; 31(2): 294-301.
  32. Gaj T., Guo J., Kato Y. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat. Methods 2012; 9(8): 805-7.
  33. Gabriel R., Lombardo A., Arens A. et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol. 2011; 29(9): 816-23.
  34. Pattanayak V., Ramirez C.L., Joung J.K. et al. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Methods 2011; 8(9): 765-70.
  35. Gaj T., Guo J., Kato Y. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat. Methods 2012; 9(8): 805-7.
  36. Bogdanove A.J., Voytas D.F. TAL effectors: customizable proteins for DNA targeting. Science 2011; 333(6051): 1843-6.
  37. Fu Y., Sander J.D., Reyon D. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 2014 32(3): 279-84.
  38. Ran F.A., Hsu P.D., Lin C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell (2013) 154(6): 1380-9.
  39. Slaymaker I.M., Gao L., Zetsche B. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 2016; 1; 351(6268): 84-8.
  40. Lombardo A., Genovese P., Beausejour C.M. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 2007; 25(11): 1298-306.
  41. Genovese P., Schiroli G., Escobar G. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 2014; 510(7504): 235-40.
  42. Menon T., Firth A.L., Scripture-Adams D.D. et al. Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs. Cell Stem Cell 2015; 16(4): 367-72.
  43. Dreyer A.K., Hoffmann D., Lachmann N. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials 2015; 69: 191-200.
  44. Hubbard N., Hagin D., Sommer K. et al. Targeted gene editing restores regulated CD40L expression and function in X-HIGM T cells. Blood 2016 [Epub ahead of print].
  45. Voit R.A., Hendel A., Pruett-Miller S.M. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res. 2014; 42: 1365-78.
  46. Cradick T.J., Fine E.J., Antico C.J. CRISPR/Cas9 systems targeting ß-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 2013; 41: 9584-92.
  47. Ma N., Liao B., Zhang H. et al. Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free beta-thalassemia induced pluripotent stem cells. J. Biol. Chem. 2013; 288: 34671-9.
  48. Yang Y., Zhang X., Yi L. et al. Naïve Induced Pluripotent Stem Cells Generated From ß-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9. Stem Cells Transl. Med. 2016; 5(1): 8-19.
  49. Sun N., Zhao H. Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnol. Bioeng. 2014; 111(5): 1048-53.
  50. Sebastiano V., Maeder M.L., Angstman J.F. et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 2011; 29(11): 1717-26.
  51. Zou J., Mali P., Huang X. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 2011; 118(17): 4599-608.
  52. Hanna J., Wernig M., Markoulaki S. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318(5858): 1920-3.
  53. Hoban M.D., Cost G.J., Mendel M.C. et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 2015; 125(17): 2597-604.
  54. sborn M.J., Gabriel R., Webber B.R. et al. Fanconi Anemia Gene Editing by the CRISPR/Cas9 System. Human Gene Therapy 2015; 26(2): 114-26.
  55. Holt N., Wang J., Kim K. et al. Human hematopoietic stem/ progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat. Biotechnol. 2010; 28(8): 839-47.
  56. Mock U., Machowicz R., Hauber I. et al. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res. 2015; 43(11): 5560-71.
  57. Mock U., Hauber I., Fehse B. Digital PCR to assess gene-editing frequencies mediated by designer nucleases. Nature Protocols 2016; 11: 598-615.
  58. Mandal P.K., Ferreira L.M., Collins R. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/ Cas9. Cell Stem Cell 2014; 15(5): 643-52.
  59. Yu J., Vodyanik M.A., Smuga-0tto K. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.
  60. Takahashi K., Tanabe K., 0hnuki M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
  61. Warlich E., Kuehle J., Cantz T. et al. Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming. Mol. Ther. 2011; 19(4): 782-9.
  62. Sebastiano V., Maeder M.L., Angstman J.F. et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 2011; 29(11): 1717-26.
  63. Zou J., Mali P., Huang X. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 2011; 118(17): 4599-608.
  64. Sun N., Zhao H. Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnol. Bioeng. 2014; 111(5): 1048-53.
  65. Merling R.K., Sweeney C.L., Chu J. et al. An AAVS1-targeted minigene platform for correction of iPSCs from all five types of chronic granulomatous disease. Mol. Ther. 2014; 23(1): 147-57.
  66. Zou J., Sweeney C.L., Chou B.K. et al. Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 2011; 117(21): 5561-72.
  67. Pessach I.M., Ordovas-Montanes J., Zhang S.Y. et al. Induced pluripotent stem cells: a novel frontier in the study of human primary immunodeficiencies. J. Allergy Clin. Immunol. 2011; 127(6): 1400-7.
  68. Park I.H., Arora N., Huo H. et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134(5): 877-86.
  69. Kennedy M., Awong G., Sturgeon C.M. et al. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep. 2012; 2(6): 1722-35.
  70. Chang C.W., Lai Y.S., Lamb L.S. Broad T-cell receptor repertoire in T-lymphocytes derived from human induced pluripotent stem cells. PLoS One 2014; 9(5): e97335.
  71. Themeli M., Kloss C.C., Ciriello G. et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat. Biotechnol. 2013; 31(10): 928-33.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies