Hematopoietic stem cells with induced apoptosis effectively inhibit glioma cell growth in vitro, but started new mechanism of tumor stem cells



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The presence of hematopoietic stem cells in culture inhibits proliferation of tumor cells. We hypothesized that pretreatment of stem cell apoptosis inducers increase their anti-tumor efficacy. The aim of the study was to explore the possibility of stem cells to induce apoptosis effectively inhibit the growth and induce the death of tumor cells in vitro. Use line C6 glioma cultures and hematopoietic (CD34+/CD45 + ) stem cells. We used dexamethasone as the apoptosis inducer. It's known that hematopoietic stem cells with apoptosis induced more effectively inhibit growth and induce a death of C6 glioma cells than native stem cells. In the process of intercellular interaction we observed phenomenon of merging stem and tumor cells, which apparently is one of the mechanisms of new tumor stem cells formation.

Full Text

Restricted Access

About the authors

I. S Bryukhovetskiy

Far Eastern Federal University; A.V. Zhirmunsky Institute of Marine Biology of FEB RAS

Vladivostok, Russia

P. V Mischenko

Far Eastern Federal University; A.V. Zhirmunsky Institute of Marine Biology of FEB RAS

Vladivostok, Russia

E. V Tolok

Far Eastern Federal University; A.V. Zhirmunsky Institute of Marine Biology of FEB RAS

Vladivostok, Russia

Yu. S. Khotimchenko

Far Eastern Federal University; A.V. Zhirmunsky Institute of Marine Biology of FEB RAS

Vladivostok, Russia

S. V Zaitsev

Far Eastern Federal University

Vladivostok, Russia

A. S Bryukhovetskiy

Far Eastern Federal University; Clinic of Restorative and Interventional Neurology and Therapy “NeuroVita"

Vladivostok, Russia

References

  1. Jiang P., Mukthavaram R., Chao Y. et al. In vitro and in vivo anticancer effects of mevalonate pathway modulation on human cancer cells. Br. J. Cancer 2014; 111(8): 1562-71.
  2. Gaspar V., Melo-Diogo D., Costa E. et al. Breast cancer immunotherapy: monoclonal antibodies and peptide-based vaccines. Expert Rev. Clin. Immunol. 2014; 10(7): 927-61.
  3. Iwamoto H., Ojima T., Nakamori M. et al. Cancer vaccine therapy using genetically modified induced pluripotent stem cell-derived dendritic cells expressing the TAA gene. Gan. to Kagaku Ryoho. 2013; 40(12): 1575-7.
  4. Брюховецкий И.С., Брюховецкий А.С., Кумейко и др. Стволовые клетки в канцерогенезе мультиформной глиобластомы. Клеточная трансплантология и тканевая инженерия 2013; VIII (2):13-19.
  5. Kaur S., Singh G., Kaur K. Cancer stem cells: An insight and future perspective. J. Cancer Res. Ther. 2014; 10(4): 846-52.
  6. Arvelo F., Cotte C., Sojo F. Stem cells and cancer. Invest. Clin. 2014; 55(4): 371-91.
  7. Barth R.F., Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J. Neurooncol. 2009; 3(94): 299-312.
  8. Брюховецкий И.С., Мищенко П.В., Толок Е.В. и др. Взаимодействие гемопоэтических стволовых и опухолевых клеток in vitro. Тихоокеанский медицинский журнал 2014; 4(58):31-7.
  9. Пальцев М.А., Иванов А.А., Северин С.Е. Межклеточные взаимодействия. Москва: Медицина, 2003.
  10. Walzlein J.H., Synowitz M., Engels B. et al. The antitumorigenic response of neural precursors depends on subventricular proliferation and age. Stem Cells 2008; 26(11): 2945-54.
  11. Silva-Vargas V., Crouch E.E., Doetsch F. Adult neural stem cells and their niche: a dynamic duo during homeostasis, regeneration, and aging. Curr. Opin. Neurobiol. 2013; 23(6): 935-42.
  12. Glass R., Synowitz M., Kronenberg G. et al. Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. Neuroscience 2005; 25(10): 2637-46.
  13. Брюховецкий А.С. Клеточные технологии в нейроонкологии: циторегуляторная терапия глиальных опухолей головного мозга. Москва: Издательская группа РОНЦ; 2011.
  14. Bryukhovetskiy A., Shevchenko V., Kovalev S. et al. To the novel paradigm of proteome-based cell therapy of tumors: through comparative proteome mapping of tumor stem cells and tissue-specific stem cells of humans. Cell Transplantation 2014; 23 Suppl 1:151-70.
  15. Брюховецкий А.С. Травма спинного мозга: клеточные технологии в лечении и реабилитации. Москва: Практическая медицина; 2010.
  16. Брюховецкий И.С., Мищенко П.В., Хотимченко Ю.С. и др. Обоснование в эксперименте in vitro феномена направленной миграции гемопоэтических стволовых и прогениторных клеток взрослых млекопитающих к клеткам крысиной глиомы линии С6. Вестник РОНЦ им. Н.Н. Блохина РАМН 2014; 25 (1-2): 31-7.
  17. Wurmser A.E., Gage F.H. Cell fusion causes confusion. Nature 2002; (6880) 416: 485-87.
  18. Schichor C., Aibrecht V., Korte B. et al. Mesenchymal stem cells and glioma cells form a structural as well as a functional syncytium in vitro. Exp. Neurol. 2012; 1(234): 208-19.
  19. Aguilar P.S., Baylies M.K., Fleissner A. et al. Genetic basis of cell-cell fusion mechanisms. Trends Genet. 2013; 29(7): 427-37.
  20. Floyd D., Purow B. Micro-masters of glioblastoma biology and therapy: increasingly recognized roles for microRNAs. Neuro Oncol. 2014; 16(5): 622-7.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies