MicroRNAs in the regulation of osteogenesis in vitro and in vivo: from fundamental mechanisms to bone diseases pathogenesis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review examined the participation of microRNA in the posttranscriptional regulation of the genes of the two main signaling pathways of osteogenic differentiation - canonical BMP/ SMAD and WNT/p-catenin. The positive and negative effects of microRNA on osteogenic differentiation in various cell cultures of humans and animals, including the choice of directions between adipo-, chondro- and osteogenesis, are indicated. The role of miRNA in the pathogenesis of bone tissue diseases and the prospects for developing methods for their diagnosis and therapy are described.

Full Text

Restricted Access

About the authors

E. V Galitsyna

Research Centre for Medical Genetics

T. B Bukharova

Research Centre for Medical Genetics

A. V Vasilyev

Research Centre for Medical Genetics; Central Research Institute of Dental and Maxillofacial Surgery, Ministry of Health of the Russian Federation

D. V Goldshtein

Research Centre for Medical Genetics; M.V. Lomonosov Moscow State University

References

  1. Fire A., Xu S., Montgomery M.K. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669): 806-11
  2. Лебедев Т.Д., Спирин П.В., Прасолов В.С. Перенос и экспрессия малых интерферирующих РНКвклетках млекопитающих с помощью лентивирусных векторов. Acta naturae 2013; 2(17): 7-18
  3. Monteys A.M., Spengler R.M., Wan J. et al. Structure and activity of putative intronic miRNA promoters. RNA 2010; 16(3): 495-505
  4. Никитенко Н.А., Прасолов В.С. Невирусные методы доставки и терапевтическое применение малых интерферирующих РНК. Acta naturae 2013; 3(18): 36-56
  5. Carthew R.W., Sontheimer E.J. Origins and Mechanisms of miR-NAs and siRNAs. Cell 2009; 136(4): 642-55
  6. Alexander R., Lodish H., Sun L. MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin. Ther. Targets 2011; 15(5): 623-36
  7. Кожевникова М.Н., Микаелян А.С., Старостин В.И. Молекулярногенетические основы регуляции остеогенной дифференцировки мезенхимных стромальных клеток. Известия РАН. Серия биологическая 2008; 3: 261-71
  8. Vishal M., Vimalraj S., Ajeetha R. et al. MicroRNA-590-5p Stabilizes Runx2 by Targeting Smad7 During Osteoblast Differentiation. Cell. Physiol. 2017; 232(2): 371-80.
  9. Shen R., Chen M., Wang Y.J. et al. Smad6 interacts with Runx2 and mediates Smad ubiquitin regulatory factor 1-induced Runx2 degradation. Biol. Chem. 2006; 281(6): 3569-76.
  10. Polakis P. Casein kinase 1: a Wnt’er of disconnect. Curr. Biol. 2002; 12(14): R499-R501.
  11. Hart M., Concordet J.P., Lassot I. et al. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr. Biol. 1999; 9(4): 207-10.
  12. Cadigan K.M., Liu Y.I. Wnt signaling: complexity at the surface. Cell Sci. 2006; 119(Pt 3): 395-402.
  13. Kapinas K., Kessler C., Ricks T. et al. MiR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. Biol. Chem. 2010; 285(33): 25221-31.
  14. Zhang W.B., Zhong W.J., Wang L. A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone 2014; 58: 59-66.
  15. Hassan M.Q., Maeda Y., Taipaleenmaki H. et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteo-mimicry of metastatic cancer cells. Biol. Chem. 2012; 287(50): 42084-92.
  16. Matsubara T., Kida K., Yamaguchi A. et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. Biol. Chem. 2008; 283(43): 29119-25.
  17. Dobreva G., Chahrour M., Dautzenberg M. et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 2006; 125(5): 971-86.
  18. Hassan M.Q., Tare R., Lee S.H. et al. HOXA10 Controls Osteoblasto-genesis by Directly Activating Bone Regulatory and Phenotypic Genes. Mol. Cell. Biol. 2007; 27(9): 3337-52.
  19. Hwang S., Park S.K., Lee H.Y. et al. Mir-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett. 2014; 588(17): 2957-63.
  20. Zhang Y., Wei Q.S., Ding W.B. et al. Increased microRNA-93-5p inhibits osteogenic differentiation by targeting bone morphogenetic protein-2. PLoS One 2017; 12(8): e0182678.
  21. Liu K., Jing Y., Zhang W. et al. Silencing miR-106b accelerates osteogenesis of mesenchymal stem cells and rescues against glucocorticoid-induced osteoporosis by targeting BMP2. Bone 2017; 97: 130-8.
  22. Itoh T., Ando M., Tsukamasa Y. et al. Expression of BMP-2 and Ets1 in BMP-2-stimulated mouse pre-osteoblast differentiation is regulated by microRNA-370. FEBS Lett. 2012; 586(12): 1693-701.
  23. Kureel J., Dixit M., Tyagi A.M. et al. MiR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death Dis. 2014; 5: e1050.
  24. Ju H., Yang Y., Sheng A. et al. MicroRNA-378 promotes myogenic differentiation by targeting BMP4. Mol. Med. Rep. 2016; 13(3): 2194-200.
  25. Yao Y., Reheman A., Xu Y. et al. MiR-125b Contributes to Ovarian Granulosa Cell Apoptosis Through Targeting BMPR1B, a Major Gene for Sheep Prolificacy. Reprod. Sci. 2019; 26(2): 295-305.
  26. Zeng Y., Qu X., Li H. et al. MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS lett. 2012; 586(16): 2375-81.
  27. Cao Y., LV Q., LV C. MicroRNA-1 53 suppresses the osteogenic differentiation of human mesenchymal stem cells by targeting bone morphogenetic protein receptor type II. Int. J. Mol. Med. 2015; 36(3): 760-6.
  28. Su X., Liao L., Shuai Y. et al. MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis. 2015; 6(8): e1851.
  29. Wu T., Zhou H., Hong Y. et al. MiR-30 family members negatively regulate osteoblast differentiation. Biol. Chem. 2012; 287(10): 7503-11.
  30. Li Z., Hassan M.Q., Volinia S. et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. PNAS USA 2008; 105(37): 13906-11.
  31. Fang T., Wu Q., Zhou L. et al. miR-106b-5p and miR-17-5p suppress osteogenic differentiation by targeting Smad5 and inhibit bone formation. Exp. Cell Res. 2016; 347(1): 74-82.
  32. Wei F., Yang S., Guo Q. MicroRNA-21 regulates Osteogenic Differentiation of Periodontal Ligament Stem Cells by targeting Smad5. Sci. Rep. 2017; 7(1): 16608.
  33. Li H., Yang F., Wang Z. et al. MicroRNA-21 promotes osteogenic differentiation by targeting small mothers against decapentaplegic 7. Mol. Med. Rep. 2015; 12(1): 1561-7.
  34. Zhang Y., Huang X., Yuan Y. MicroRNA-410 promotes chon-drogenic differentiation of human bone marrow mesenchymal stem cells through down-regulating Wnt3a. Am. J. Transl. Res. 2017; 9(1): 136-145.
  35. Zhang J., Tu Q., Bonewald L.F. et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. Bone Miner. Res. 2011; 26(8): 1953-63.
  36. Long H., Sun B., Cheng L. et al. miR-139-5p Represses BMSC Osteogenesis via Targeting Wnt/p-Catenin Signaling Pathway. DNA Cell Biol. 2017; 36(8): 715-24.
  37. Li G., Luna C., Qiu J. et al. Role of miR-204 in the regulation of apoptosis, endoplasmic reticulum stress response, and inflammation in human trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 2011; 52(6): 2999-3007.
  38. Li T., Li H., Wang Y. et al. microRNA-23a inhibits osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting LRP5. Int. J. Biochem. Cell Biol. 2016; 72: 55-62.
  39. Sun T., Li C.T., Xiong L. et al. MiR-375-3p negatively regulates osteogenesis by targeting and decreasing the expression levels of LRP5 and p-catenin. PLoS One 2017; 12(2): e0171281.
  40. Elsafadi M., Manikandan M., Alajez N.M. et al. MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3. Stem Cell Res. 2017; 20: 94-104.
  41. Wang N., Zhou Z., Wu T. et al. TNF-alpha-induced NF-kappaB activation upregulates microRNA-150-3p and inhibits osteogenesis of mesenchymal stem cells by targeting beta-catenin. Open Biol. 2016; 6(3): 150258.
  42. Huang J., Chen L. IL-1 p inhibits osteogenesis of human bone marrow-derived mesenchymal stem cells by activating FoxD3/ microRNA-496 to repress wnt signaling. Genesis 2017; 55(7).
  43. Lin G., Liu B., Meng Z. et al. MiR-26a enhances invasive capacity by suppressing GSK3p in human lung cancer cells. Exp. Cell Res. 2017; 352(2): 364-74.
  44. Wang Q., Cai J., Cai X.H. et al. MiR-346 Regulates Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by Targeting the Wnt/b-Catenin Pathway. PLoS One 2013; 8(9): e72266.
  45. Jia J., Feng X., Xu W. et al. MiR-17-5p modulates osteoblastic differentiation and cell proliferation by targeting SMAD7 in non-traumatic osteonecrosis. Exp. Mol. Med. 2014; 46: e107.
  46. Zhang Y., Xie R.L., Croce C.M. et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. PNAS USA 2011; 108(24): 9863-8.
  47. Zuo B., Zhu J.F., Li J. et al. MicroRNA-103a functions as a mechano-sensitive microRNA to inhibit bone formation through targeting Runx2. Bone Miner. Res. 2015; 30(2): 330-45.
  48. Xie H., Lim B., Lodish H.F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009; 58(5): 1050-7.
  49. Huang J., Zhao L., Xing L. et al. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 2010; 28(2): 357-64.
  50. Liao L., Yang X., Su X. et al. Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis. 2013; 4: e600.
  51. Tome M., Lopez-Romero P., Albo C. et al. микрорНК-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 2011; 18(6): 985-95.
  52. McCully M., Conde J., Baptista P.V. et al. Nanoparticle-antagomiR based targeting of miR-31 to induce osterix and osteocalcin expression in mesenchymal stem cells. PLoS One 2018; 13(2): e0192562.
  53. Deng Y., Wu S., Zhou H. et al. Effects of a miR-31, Runx2 and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev. 2013; 22(16): 2278-86.
  54. Baglio S.R., Devescovi V., Granchi D. et al. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene 2013; 527(1): 321-31.
  55. Li E., Zhang J., Yuan T. et al. MiR-143 suppresses osteogenic differentiation by targeting Osterix. Mol. Cell. Biochem. 2014; 390(1-2): 69-74.
  56. Jia J., Tian Q., Ling S. et al. miR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett. 2013; 587(18): 3027-31.
  57. Shi K., Lu J., Zhao Y. et al. MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone 2013; 55(2): 487-94.
  58. Martinez-Sanchez A., Dudek K.A., Murphy C.L. Regulation of Human Chondrocyte Function through Direct Inhibition of Cartilage Master Regulator SOX9 by MicroRNA-145 (miRNA-145). Biol. Chem. 2012; 287(2): 916-24.
  59. Dharap A., Pokrzywa C., Murali S. et al. Mutual induction of transcription factor PPARy and microRNAs miR-145 and miR-329. Neurochem. 2015; 135(1): 139-46.
  60. Zhang J.F., Fu W.M., He M.L. et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol. Biol. Cell 2011; 22(21): 3955-61.
  61. Yang L., Cheng P., Chen C. et al. MiR-93/Sp7 function loop mediates osteoblast mineralization. Bone Miner. Res. 2012; 27(7): 1598-606.
  62. Itoh T., Nozawa Y., Akao Y. MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. Biol. Chem. 2009; 284(29): 19272-9.
  63. Okamoto H., Matsumi Y., Hoshikawa Y. et al. Involvement of microRNAs in regulation of osteoblastic differentiation in mouse induced pluripotent stem cells. PLoS One 2012; 7(8): e43800.
  64. Huang J., Meng Y., Liu Y. et al. MicroRNA-320a regulates the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting HOXA10. Cell. Physiol. Biochem. 2016; 38(1): 40-8.
  65. Wei J., Shi Y., Zheng L. et al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J. Cell Biol. 2012; 197(4): 509-21.
  66. Xie Q., Wang Z., Bi X. et al. Effects of miR-31 on the osteogenesis of human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2014; 446(1): 98-104.
  67. Hu N., Feng C., Jiang Y. et al. Regulative Effect of Mir-205 on Osteogenic Differentiation of Bone Mesenchymal Stem Cells (BMSCs): Possible Role of SATB2/Runx2 and ERK/MAPK Pathway. Int. J. Mol. Sci. 201 5; 16(5): 10491-506.
  68. Zhao W., Wu C., Dong Y. et al. MicroRNA-24 Regulates Osteogenic Differentiation via Targeting T-Cell Factor-1. Int. J. Mol. Sci. 2015; 16(5): 11699-712.
  69. Amelio I., Lena A.M., Bonanno E. et al. miR-24 affects hair follicle morphogenesis targeting Tcf-3. Cell Death Dis. 2013; 4(11): e922.
  70. Li H., Xie H., Liu W. et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. Clin. Invest. 2009; 119(12): 3666-77.
  71. Hu R., Liu W., Li H. et al. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. Biol. Chem. 2011; 286(14): 12328-39.
  72. Wang X., Guo B., Li Q. et al. MiR-214 targets ATF4 to inhibit bone formation. Nat. Med. 2013; 19: 93-100.
  73. Liu H., Liu Q., Wu X.P. et al. MiR-96 regulates bone metabolism by targeting osterix. Clin. Exp. Pharmacol. Physiol. 2018; 45(6): 602-13.
  74. Yang N., Wang G., Hu C. et al. Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. Bone Miner. Res. 2013; 28(3): 559-73.
  75. Wang Z., Lu Y., Zhang X. et al. Serum microRNA is a promising biomarker for osteogenesis imperfecta. Intractable Rare Dis. Res. 2012; 1(2): 81-5.
  76. Sun K., Wang J., Liu F. et al. Ossotide promotes cell differentiation of human osteoblasts from osteogenesis imperfecta patients by up-regulating miR-145. Biomed. Pharmacother. 2016; 83: 1105-10.
  77. Kaneto C.M., Lima P.S., Zanette D.L. et al. COL1A1 and miR-29b show lower expression levels during osteoblast differentiation of bone marrow stromal cells from Osteogenesis Imperfecta patients. BMC Med. Genet. 2014; 15: 45.
  78. Chen P., Wei D., Xie B. et al. Effect and possible mechanism of network between microRNAs and RUNX2 gene on human dental follicle cells. J. Cell. Biochem. 2014; 115(2): 340-8.
  79. Ge J., Guo S., Fu Y. et al. Dental Follicle Cells Participate in Tooth Eruption via the RUNX2-MiR-31-SATB2 Loop. Dent. Res. 2015; 94(7): 936-44.
  80. Chang H., Wang Y., Liu H. et al. Mutant Runx2 regulates amelo-genesis and osteogenesis through a miR-185-5p-Dlx2 axis. Cell Death Dis. 2017; 8(12): 3221.
  81. Rupaimoole R., Slack F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017; 16(3): 203-22.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies