Analyis of biological compatibility of polylactide nanofibrous matrix vitalized with cardiac fibroblasts in a porcine model



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Currently the use of synthetic biodegradable polymers based on polyurethane, polycaprolactone, polylactic and polyglycolic acids structures and their co-polymers is one of the most perspective directions of tissue engineering development. Electrospinning was found as an optimal way to produce nanofibers suitable for building several types of biomaterial scaffolds that are used in cell therapy. This technology allows creating a stable biodegradable and highly biocompatible matrix. In this study we investigate the viability of cardiac fibroblasts cultivated on polymeric nanofibrous scaffolds in vitro and in vivo after implantation in the myocardium of an experimental animal. Polymeric nanofibers were produced on an electrospinning unit. Prepared matrixes were vitalized with cell cultures, received from atriums of several mini-pigs. Cell viability was estimated by the use of XTT based colorimetric assay. Two groups of mini-pigs were selected for this research. The first group underwent a procedure of intramyocardial implantation of a matrix, grown with cardiac cell culture. In the second group a clear polymeric matrix was implanted. Seven days after the procedure animals were sacrificed and fragments of myocardium containing implants were harvested. Frozen sections were prepared immediately, then a standard histological analysis and immunofluorescent staining were performed. Current results can be significant for further development of polymeric scaffolds and for research of biophysical and electrophysiological features of cardiac cell cultures, what will help to expand the abilities of contemporary regenerative medicine and may become a standard of autological biological therapy.

Full Text

Restricted Access

About the authors

E. V Chepeleva

E.N. Meshalkin National Medical Research Center

Email: e_chepeleva@meshalkin.ru

V. A Balashov

Moscow Institute of Physics and Technology (State University)

A. A Dokuchaeva

E.N. Meshalkin National Medical Research Center

A. A Korobejnikov

E.N. Meshalkin National Medical Research Center

A. G Strelnikov

E.N. Meshalkin National Medical Research Center

S. O Lependin

E.N. Meshalkin National Medical Research Center

S. V Pavlova

E.N. Meshalkin National Medical Research Center

K. I. Agladze

Moscow Institute of Physics and Technology (State University)

D. S Sergeevichev

E.N. Meshalkin National Medical Research Center

E. A Pokushalov

E.N. Meshalkin National Medical Research Center

References

  1. Ибрагимова А.Г., Еремеева М.В. Современные технологии для создания биологического водителя ритма. Разработка и регистрация лекарственных средств 2015; 3(12): 180-6.
  2. Бокерия Л.А., Бокерия О.Л., Меликулов А.Х. и др. Гены, стволовые клетки и биологические пейсмейкеры. Анналы аритмологии 2009; 4: 68-78.
  3. Miake J., Marban E., Nuss H.B. Biological pacemaker created by gene transfer. Nature 2002; 419(6903): 132-3.
  4. Zhang J., Wilson G.F., Soerens A.G. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 2009; 104(4): 3041.
  5. Zwi L., Caspi O., Arbel G. et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 2009; 20(15): 1513-23.
  6. Vacanti C.A. History of tissue engineering and a glimpse into its future. Tissue Eng. 2006; 12(5): 1137-42.
  7. Isenberg B.C., Wong J.Y. Building structure into engineered tissues. Mater. Today. 2006; 9(12): 54-60.
  8. Ramakrishna S., Fujihara K., Teo W.E. et al. An introduction to electrospinning and nanofibers. Hackensack [NJ]: World Scientific; 2005.
  9. Sell S.A., McClure M.J., Garg K. et al. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv. Drug Deliver Rev. 2009; 61(12): 1007-19.
  10. Байрамова С.А., Стрельников А.Г., Романов А.Б. и др. Перспективы создания биологического пейсмейкера с использованием современных технологий. Гены и клетки 2017; 12(2): 29-36.
  11. Павлова С.В., Сергеевичев Д.С., Чепелева Е.В. и др. Сравнение мезенхимальных стромальных клеток костного мозга и региональных стволовых клеток сердца и фибробластов кожи человека. Патология кровообращения и кардиохирургия 2015; 19(4-2): 12-9.
  12. Medvedev S.P., Grigor'eva E.V., Shevchenko A.I. et al. Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem Cells Dev. 2011; 20(6): 1099-112.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies