Modification of biodegradable fibrous scaffolds with Epidermal Growth Factor by emulsion electrospinning for promotion of epithelial cells proliferation



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Supporting of a physiologically relevant cellular micro-environment is currently a grand challenge in the design of tissue-engineering grafts based on biocompatible and biodegradable polymeric materials. The aim of this research was to develop a new technique of a fibrous polycaprolactone-based scaffold modification with epidermal growth factor (EGF) and assessment of its effect on scaffold properties and proliferative activity of epithelial cells in vitro. Fibrous scaffolds from EGF-functionalized polycaprolactone has received by the emulsion electrospinning method. Prolonged yield of EGF upon the material destruction and its biological effect on the MCF7 cell line proliferation have been estimated using ELISA and iCEL-Ligence real-time cell analysis for respectively.

Full Text

Restricted Access

About the authors

T. H Tenchurin

National Research Center “Kurchatov Institute"

A. V Lyundup

I.M. Sechenov First Moscow State Medical University, Institute for regenerative medicine

A. G Demchenko

I.M. Sechenov First Moscow State Medical University, Institute for regenerative medicine

M. E Krasheninnikov

I.M. Sechenov First Moscow State Medical University, Institute for regenerative medicine

M. V Balyasin

I.M. Sechenov First Moscow State Medical University, Institute for regenerative medicine

I. D Klabukov

I.M. Sechenov First Moscow State Medical University, Institute for regenerative medicine

A. D Shepelev

National Research Center “Kurchatov Institute"

V. G Mamagulashvili

National Research Center “Kurchatov Institute"

A. S Orehov

National Research Center “Kurchatov Institute"

S. N Chvalun

National Research Center “Kurchatov Institute"

T. G Dyuzheva

I.M. Sechenov First Moscow State Medical University, Institute for regenerative medicine

References

  1. Aamodt J.M., Grainger D.W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 2016; 86: 68-82.
  2. Edgar L., McNamara K., Wong T. et al. Heterogeneity of Scaffold Biomaterials in Tissue Engineering. Materials (Basel) 2016; 9t5): 332.
  3. Насонова М.В., Шишкова Д.К., Антонова Л.В. и др. Результаты субкутанной имплантации полимерных матриксов на основе поликапролактона и полигидроксибутировалерата, модифицированных ростовыми факторами. Современные технологии в медицине 2017; 9(2): 7-18.
  4. Антонова Л.В., Кривкина Е.О., Сергеева Е.А. и др. Тканеинженерный матрикс, модифицированный биологически активными молекулами для направленной регенерации тканей. Комплексные проблемы сердечно-сосудистых заболеваний 2016; 5(1): 18-25.
  5. Yang B., Zhou L., Peng B. et al. In vitro comparative evaluation of recombinant growth factors for tissue engineering of bladder in patients with neurogenic bladder. J. Surg. Res. 2014; 186(1): 63-72.
  6. Sebe I., Szabo P., Kallai-Szabo B. et al. Incorporating small molecules or biologics into nanofibers for optimized drug release: A review. Int. J. Pharm. 2015; 494(1): 516-30.
  7. Севостьянова В.В., Elgudin Y.L., Wnek G.E. и др. Свойства тканеинженерных матриксов из поликапролактона, импрегнированных факторами роста VEGF и bFGF. Клеточная трансплантология и тканевая инженерия 2012; 7(3): 62-7.
  8. Simon-Yarza T., Formiga F.R., Tamayo E. et al. Vascular Endothelial Growth Factor-Delivery Systems for Cardiac Repair: An Overview. Theranostics 2012; 2(6): 541-52.
  9. Sell S., Barnes C., Smith M. et al. Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polymer Int. 2007; 56(11): 1349-60.
  10. Wang X., Ding B., Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today 2013; 16(6): 229-41.
  11. Люндуп А.В., Демченко А.Г., Тенчурин Т.Х. и др. Повышение эффективности заселения биодеградируемых матриксов стромальными и эпителиальными клетками при динамическом культивировании. Гены и клетки 2016; 11(3): 102-7.
  12. Boonstra J., Rijken P., Humbel B. et al. The epidermal growth factor. Cell Biol. Int. 1995; 19(5): 413-30.
  13. Холмберг К., Йенсон Б., Кронберг Б. и др. Поверхностно-активные вещества и полимеры в водных растворах. М.: БИНОМ Лаборатория знаний; 2007.
  14. Senga K., Mostov K.E., Mitaka T. et al. Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25. Mol. Biol. Cell 2012; 23(15): 2845-55.
  15. Арутюнян И.В., Тенчурин Т.Х., Кананыхина Е.Ю. и др. Нетканые материалы на основе поликапролактона для тканевой инженерии: выбор структуры и способа заселения. Гены и клетки 2017; 12(1): 62-71.
  16. Hardwicke J., Moseley R., Stephens P. et al. Bioresponsive dextrin - rhEGF conjugates: In vitro evaluation in models relevant to its proposed use as a treatment for chronic wounds. Molecular pharmaceutics 2010; 7(3): 699-707.
  17. Araki F., Nakamura H., Nojima N. et al. Stability of Recombinat Human Epidermal Growth Factor in Various Solutions. Chemical and Pharm.l Bull. 1989; 37(2): 404-6.
  18. Ji W., Sun Y., Yang F. et al. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharmaceutical res. 2011; 28(6): 1259-72.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies