Osteogenic potential of multipotent mesenchymal stromal cells from human exfoliated deciduous teeth before and after cryopreservation



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The use of multipotent mesenchymal stromal cellsfrom human exfoliated deciduous teeth (SHED) to stimulate bone regeneration requires data on the influence of cryopreservation on the osteogenic differentiation capacity of these cells. SHED were subjected to cryopreservation. Before freezing and after thawing, cell cultures were exposed osteogenic differentiation with vitamin D3 or dexametasone and assessed for expression of the osteogenic markers osteocalcin, alkaline phosphatase, BMP-2 and RunX2 using real-time qPCR. Extracellular matrix (ECM) mineralization was evaluated by Alizarin red staining. Supplementation of osteogenic medium with vitamin D3 increased the expression of the osteogenic markers osteocalcin, alkaline phosphatase, BMP-2 and RunX2 as well as promoted an increase in the synthesis and mineralization of ECM in the cells both before and after cryopreservation. In the presence of vitamin D3 gene expression of alkaline phosphatase, BMP-2 and RunX2 after cryopreservation was higher than before freezing. Gene expression of osteocalcin, BMP2 RunX2 in osteogenic medium with vitamin D3was higher compared with dexamethasone for 14 days differentiation both before or after cryopreservation. The maintenance of SHED osteogenic differentiation potential after long-term cryopreservation provides a basis for banking of these cellsfor further auto- or allotransplantation.

Full Text

Restricted Access

About the authors

T. B Bukharova

Research Centre for Medical Genetics.

Moscow, Russia.

G. E Leonov

Research Centre for Medical Genetics.

Moscow, Russia.

E. V Galitsyna

Research Centre for Medical Genetics.

Moscow, Russia.

A. V Vasilyev

Peoples' Friendship University of Russia; Research Centre for Medical Genetics; Central Research Institute of Dental and Maxillofacial Surgery.

Moscow, Russia.

I. V Vakhrushev

Institute of Biomedical Chemistry.

Moscow, Russia.

E. B Vikhrova

Research Centre for Medical Genetics.

Moscow, Russia.

O. V Makhnach

Research Centre for Medical Genetics.

Moscow, Russia.

D. V Goldstein

Research Centre for Medical Genetics.

Moscow, Russia.

References

  1. Zhu M., Kohan E., Bradley J. et al. The effect of age on osteogenic, adipogenic and proliferative potential of female adipose-derived stem cells. J. Tissue Eng. Regen. Med. 2009; 3(4):290-301.
  2. Yalvac M.E., Ramazanoglu M., Tekguc M. et al. Human tooth germ stem cells preserve neuro-protective effects after long-term cryopreservation. Current Neurovascular Research 2010; 7(1): 49-58.
  3. Miura M., Gronthos S., Zhao M. et al. SHED: Stem cells from human exfoliated deciduous teeth. PNAS USA 2003;100(10): 5807-12.
  4. Ji E.H., Song J.S., Kim S.O. et al. Viability of pulp stromal cells in cryopreserved deciduous teeth. Cell Tissue Bank 2014;15(1): 67-74.
  5. Lee S.Y., Chiang P.C., Tsai Y.H. et al. Effects of cryopreservation of intact teeth on the isolated dental pulp stem cells. Endod. 2010; 36(8): 1336-40.
  6. Lee H.S., Jeon M., Kim S.O. et al. Characteristics of stem cells from human exfoliated deciduous teeth (SHED) from intact cryopreserved deciduous teeth. Cryobiology 2015; 71(3): 374-83.
  7. Ma L., Makino Y., YamazaH. et al. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine. PLoS One 2012; 7(12): e51777.
  8. Ginani F., Soares D.M., Rabelo L.M. et al. Effect of a cryopreservation protocol on the proliferation of stem cells from human exfoliated deciduous teeth. Acta Odontol.Scand. 2016; 31: 1-7.
  9. Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
  10. Вахрушев И.В., Суздальцева Ю.Г., Бурунова В.В. и др. Мезенхимальные клетки пульпы молочного зуба: цитофенотип и первичная оценка возможности применения в тканевой инженерии костной ткани. Клеточные технологии в биологии и медицине 2012; (1): 29-33.
  11. Rosa V., Dubey N., Islam I. et al. Pluripotency of stem cells from human exfoliated deciduous teeth for tissue engineering. Stem Cells Int. 2016; 2016: 5957806.
  12. Haynesworth S.E., Goshima J., Goldberg V.M. et al. Characterization of cells with osteogenic potential from human marrow.Bone 1992; 13(1): 81-8.
  13. Zuk P.A., Zhu M., Ashjian P. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 2002; 13(12): 4279-95.
  14. Логовская Л.В., Бухарова Т.Б., Волков А.В. и др. Индукция остеогенной дифференцировки мультипотентных мезенхимальных стромальных клеток жировой ткани человека. Клеточные технологии в биологии и медицине 2013; 1: 28-34.
  15. Khanna-Jain R., Mannerstrom B., Vuorinen A. et al. Osteogenic differentiation of human dental pulp stem cells on p-tricalcium phosphate/poly (l-lactic acid/caprolactone) three-dimensional scaffolds. J. Tissue Eng. 2012; 3(1):2041731412467998.
  16. Huang G.T., Gronthos S., Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J.Dent. Res. 2009; 88(9):792-806.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies