Antitumor effect of hybrid nanocomplexes containing nanoparticles of orthovanadates rare earth elements and cholesterol



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An actual task of current oncology is the search for the structures, enabling to selectively affect the tumor stem cells, on the expansion rate of those the activity of oncologic process depends. Perspective in this aspect is the use of nanostructures selectively recognizing and inactivating tumor stem cells. In the research there was studied the effect of synthesized hybrid nanocomplexes based on nanoparticles of rare earth orthovanadates GdYV04:Eu3+, cholesterol and hydrophobic luminescent stain Dil on functional activity of Ehrlich carcinoma cells and expression in them of nanog, oct-4, sox-2 genes After pre-treatment of Ehrlich carcinoma cells with nanocomplexes there was shown an inhibition of tumor growth in vivo due to inactivation of the most carcinogenic CD44hi cells, which was accompanied with the reduced expression rate of the studied genes in total pool of cells The findings contribute to the understanding of the effect mechanisms of orthovanadates and open the prospects to apple new forms of nanocomposites in treatment of oncology diseases

Full Text

Restricted Access

About the authors

A. N Goltsev

Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine

N. N Babenko

Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine

Yu. A Gaevskaya

Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine

O. V Chelombytko

Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine

N. A Bondarovich

Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine

T. G Dubrava

Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine

M. V Ostankov

Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine

A. Yu Dimitrov

Institute for Problems of Cryobiology and Cryomedicine of the NAS of Ukraine

V. K Klochkov

Institute for Scintillation Materials of the NAS of Ukraine

N. S Kavok

Institute for Scintillation Materials of the NAS of Ukraine

Yu. V Malyukin

Institute for Scintillation Materials of the NAS of Ukraine

References

  1. Ambasta R.K., Sharma A., Kumar P. Nanoparticle mediated targeting of VEGFR and cancer stem cells for cancer therapy Vasc Cell. 2011; 3: 26.
  2. Evangelou A.M. Vanadium in cancer treatment. Crit. Rev. 0ncol. Hematol. 2002; 42 (3): 249-65.
  3. Kopf-Maier P, Krahl D. Tumor inhibition by metallocenes: ultrastructural localisationof titanium and vanadium, in treated tumor cells by electron energy loss spectroscopy. Chem. Biol. interact. 1983; 44(3): 317-28.
  4. Клочков В.К. Інститут сцинтиляційних матеріалів НАН України, власник. Спосі6 отримання водної дисперсії холестерину. Патент Украины 10801. 10. 03. 2015.
  5. Al - Jarallah A., Trigatti B.L. A role for the scavenger receptor, class B type i in high density lipoprotein dependent activation of cellular signaling pathways. Biochim Biophys Acta. 2010; 1801(12): 1239-48.
  6. Гольцев А.Н., Бабенко Н.Н., Гаевская Ю.А. и др. Идентификация опухолевых клеток гибридными комплексами на основе неорганических наночастиц и органических биологически активных соединений. Сб. статей 16-й Междунар. научн.-практ. конференции «Фундаментальные и прикладные исследования, разработка и применение высоких технологий в промышленности и экономике», 5-6 декабря 2013 г., СПб.: Изд-во Политех. ун-та, 2013. С. 121-31.
  7. Ozaslan M., Karagoz I.D., Kilic I.H. et al. Ehrlich ascites carcinoma. African J. Biotech. 2011; 10(13): 2375-78.
  8. Al-Hajj M., Wicha M.S., Benito-Hernandez A. et al. Prospective identification of tumorigenic breast cancer cells. PNAS USA 2003; 100 (7): 3983-8.
  9. Ponti D., Costa A., Zaffaroni N. et al. isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005; 65: 5506-11.
  10. Jaggupilli A., Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin. Dev. immunol. 2012; 2012: 708036.
  11. Ghebeh H., Sleiman G.M., Manogaran P.S. et al. Profiling of normal and malignant breast tissue show CD44high/CD24low phenotype as a predominant stem/progenitor marker when used in combination with Ep-CAM/CD49f markers. BMC Cancer 2013; 13: 289
  12. Chaffer C.L., Brueckmann I., Scheel C. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. PNAS USA 2011; 108: 7950-5.
  13. Goltsev A.N., Chelombytko O.V., Bondarovich N.A. et al. Cryopreservation effect on pluripotency gene expression in Ehrlich carcinoma cells cells: Abstracts of Annual Scientific Conference & AGM of the Society for Low Temperature Biology (STBL) «Freezing biological time 50th Anniversary Celebration» London, UK, October 8-10, 2014. P. 84.
  14. Shipitsin M., Campbell L.L., Argani P., et al. Molecular definition of breast tumor heterogeneity Cancer Cell 2007; 11: 259-73
  15. Ezeh U.I., Turek P.J., Reijo R.A. et al. Human embryonic stem cell genes 0CT4, NAN0G, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 2005; 104: 2255-65.
  16. Kumar S.M., Liu S., Lu H. et al. Acquired cancer stem cell phenotypes through 0ct4-mediated dedifferentiation. Oncogene 2012; 31: 4898-911.
  17. Wang M.L., Chiou S.H., Wu C.W. Targeting cancer stem cells: emerging role of Nanog transcription factor 0nco Targets Ther 2013; 4 (6): 1207-20.
  18. Гольцев А.М., Сафранчук О.В., Бондарович М.О. та інш. Мєтодичні підходи до стабілізації структурного і функціонального станів кріоконсервованих клітин аденокарциноми Ерліха. Доповіді Національної академії наук України. 2012; (8): 115-22.
  19. Клочков В.К. Водные коллоидные растворы нанолюминофоров nReV04:Eu3+ (Re = Y, Gd, La). Наноструктурное материаловедение 2009; (2): 3-8
  20. Livak K.J., Schmittgen Th.D. Analysis of relative gene expression data Using real-time quantitative PCR and the 2-AACt method. Methods 2001; 25: 402-8.
  21. Betker J.L., Kullberg M., Gomez J. et al. Cholesterol domains enhance transfection. Ther. Deliv. 2013; 4(4): 453-62.
  22. Гольцев А.Н., Бабенко Н.Н., Гаевская Ю.А. и др. Способность наночастиц на основе ортованадатов к идентификации in vitro и ингибиции in vivo стволовых раковых клеток Наносистемы, наноматериалы, нанотехнологии 2013; 11(4): 729-39.
  23. Leung E.L., Fiscus R.R., Tung J.W. et al. Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties PLoS 0ne 2010; 19 (5): 11-9.
  24. Korkaya H., Paulson A., Charafe-Jauffret E. et al. Regulation of mam-mary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009; 7 (6): 100-21.
  25. Matsuda S., Nakanishi A., Wada Y. et al. Roles of Pi3K/AKT/ PTEN Pathway as a target for pharmaceutical therapy 0pen Med Chem. J. 2013; 7: 23-9.
  26. Cooper D.L., Dougherty G.J. To metastasize or not - selection of CD44 splice sites Nat Med 1995; 1: 95-7
  27. Williams D.A., Cancelas J. A. Leukaemia: niche retreats for stem cells. Nature 2006; 444(7121): 827-8.
  28. Bourguignon L.Y.W., Peyrollier K., Xia W. et al. Hyaluronan-CD44 interaction activates stem cell marker nanog, stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J. Biol. Chem. 2008; 283(25): 17635-51.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies