Geneand cell-based therapy of muscle system hereditary disorders: state-of-art



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Genetic disorders primarily affecting skeletal muscles can be caused by dysfunction of more than 30 genes. To date there is no effective etiotropic and pathogenetic treatment of such disorders. Investigators focus on search for new therapeutic agents based on gene and cell technologies, small molecules as well. There are numerous preclinical and several dozens of clinical studies in the world. Unfortunately tested technologies did not lead to significant advance in treatment of patients with such disorders. At the same time resulting data allow to determine the most feasible directions of future development - combining of genome correction methods with cell delivery of corrected genome to skeletal muscles. This review is intended to give general information about etiology of skeletal muscles genetic disorders, the main directions of biotechnological development and results of the clinical studies.

Full Text

Restricted Access

About the authors

R. V Deev

Human Stem Cell Institute; Kazan (Volga Region) Federal University

Moscow,Kazan, Russia

M. O Mavlikeev

Kazan (Volga Region) Federal University

Kazan, Russia

I. Ya Bozo

Human Stem Cell Institute; A.I. Evdokimov Moscow State University of Medicine and Dentistry

Moscow, Russia

A. A Pulin

A.I. Burnasyan Federal Medical Biophysical Center

Moscow, Russia

I. I Eremin

A.I. Burnasyan Federal Medical Biophysical Center

Moscow, Russia

References

  1. River F., Meyer P., Walther-Louvie U. и др. Врожденные мышечные дистрофии: классификация и диагностика. Нервно-мышечные болезни 2014; 1: 6-19.
  2. Leung D.G., Wagner K.R. Therapeutic Advances in Muscular Dystrophy. Ann. Neurol. 2013; 74(3): 404-11.
  3. Nigro V., Savarese M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol. 2014; 33(1): 1-12.
  4. Mahmood O.A., Jiang X.M. Limb-girdle muscular dystrophies: Where next after six decades from the first proposal. Mol. Med. Rep. 2014; 9(5): 1515-32.
  5. Rocha C.T., Hoffman E.P. Limb-Girdle and Congenital Muscular Dystrophies: Current Diagnostics, Management, and Emerging Technologies. Curr. Neurol. Neurosci. Rep. 2010; 10(4): 267-76.
  6. Kinter J., Sinnreich M. Molecular targets to treat muscular dystrophies. Swiss Med. Wkly. 2014; 144:w13916. doi: 10.4414/ smw.2014.13916.
  7. Allamand V., Guicheney P. Merosin-deficient congenital muscular dystrophy, autosomal recessive (MDC1A, MIM#156225, LAMA2 genecoding for alpha2 chain of laminin). Eur. J. Hum. Genet. 2002; 10(2): 91-4.
  8. Bonnemann C. The collagen Vl-related myopathies: muscle meets its matrix. Nat. Rev. Neurol. 2011; 7: 379-90.
  9. Muscle disease: pathology and genetics / edited by Hans H. Goebel, Caroline A. Sewry, Roy O. Weller. Second edition. 2013.
  10. Muscular dystrophy, congenital, due to ITGA7 deficiency/ http:// omim.org/entry/613204?search = 613204S.highlight = 613204.
  11. Muscular dystrophy, limb-girdle, type IC/. http://www.omim. org/entry/607801.
  12. Rippling muscle disease. http://www.omim.org/entry/606072.
  13. Creatine phosphokinase, elevated serum. http://www.omim. org/entry/123320.
  14. Caveolin 3. http://www.omim.org/entry/601253.
  15. Cardiomyopathy, familial hypertrophic. http://www.omim.org/ entry/192600.
  16. Шнайдер Н.А., Николаева Т.Я., Бороева Е.Н. и др. Конеч-ностно-поясная мышечная дистрофия с аутосомно-доминантным типом наследования: пельвиофеморальная форма Лейдена-Мебиуса. Нервно-мышечные болезни 2014; 1: 46-61.
  17. Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, 9. http://www.omim.org/entry/613818.
  18. Kirschner J., Lochmuller H. Sarcoglycanopathies. Handb. Clin. Neurol. 2011; 101: 41-6.
  19. Sandona D., Betto R. Sarcoglycanopathies: molecular pathogenesis and therapeutic prospects. Expert Rev. Mol. Med. 2009; 11: e28.
  20. Muscular dystrophy, limb-girdle, type 2Q. http://omim.org/ entry/613723.
  21. Epidermolysis bullosa simplex with muscular dystrophy. http:// omim.org/entry/226670.
  22. Epidermolysis bullosa simplex with pyloric atresia. http://omim. org/entry/612138.
  23. Muscular dystrophy, limb-girdle, type 2A. http://omim.org/ entry/253600.
  24. Cardiomyopathy, dilated, 1X. http://www.omim.org/entry/611615.
  25. Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4. http://www.omim.org/entry/253800.
  26. Muscular dystrophy-dystroglycanopathy (congenital without mental retardation), type B, 4. http://www.omim.org/entry/613152.
  27. Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, http://www.omim.org/entry/611588.
  28. Muscular dystrophy, limb-girdle, type 2R. http://www.omim. org/entry/615325.
  29. Cardiomyopathy, dilated, 1l. http://www.omim.org/entry/604765.
  30. Myopathy, myofibrillar, 1. http://www.omim.org/entry/601419.
  31. Scapuloperoneal syndrome, neurogenic, Kaeser type. http:// www.omim.org/entry/181400.
  32. van Spaendonck-Zwarts K.Y., van Hessem L., Jongbloed J.D. et al. Desmin-related myopathy: a review and meta-analysis. Clin. Genet. 2011; 80: 354-66.
  33. Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 5. http://www.omim.org/entry/613153.
  34. Muscular dystrophy-dystroglycanopathy (congenital with or without mental retardation), type B, 5. http://www.omim.org/ entry/606612.
  35. Muscular dystrophy-dystroglycanopathy (limb-girdle), type C, http://www.omim.org/entry/607155.
  36. Selenoprotein N, 1. http://www.omim.org/entry/606210.
  37. Rigid Spine with Muscular Dystrophy Type 1 (RSMD1): SEPN1 Gene Deletion/Duplication. http://geneticslab.emory.edu/tests/DSEP1.
  38. LAMIN A/C. http://omim.org/entry/150330.
  39. Emery-Dreifuss muscular dystrophy 1, X-linked. http://www. omim.org/entry/300384.
  40. Zhang M., Chen J., Si D. et al. Whole exome sequencing identifies a novel EMD mutation in a Chinese family with dilated cardiomyopathy. BMC Med. Genet. 2014; 15: 77. doi: 10.1186/1471-2350-15-77.
  41. Muscular dystrophy, congenital, megaconial type. http://www. omim.org/entry/602541.
  42. Oliveira J., Negrao L., Fineza I. et al. New splicing mutation in the choline kinase beta (CHKB) gene causing a muscular dystrophy detected by whole-exome sequencing. J. Hum. Genet. 2015; 60(6): 305-12.
  43. Miller J.B., Girgenrath M. The role of apoptosis in neuromuscular diseases and prospects for anti-apoptosis therapy. Trends Mol. Med. 2006; 12: 279-86.
  44. Сапрыкин В.П., Турбин Д.А. Основы морфологической диагностики заболеваний скелетных мышц: М. 1997.
  45. Therapeutic Strategies. http://www.jain-foundation.org/ scientific-resources/therapeutic-strategies.
  46. Сукач А.Н. Перспективы использования генной и клеточной терапии для лечения мышечных дистрофий. Клеточная трансплантология и тканевая инженерия 2006; 2(4): 44-50.
  47. Mackenzie T.C., Flake A.W. Multilineage differentiation of human MSC after in utero transplantation. Cytotherapy 2001; 3(5): 403-5.
  48. Nijagal A., Le T., Wegorzewska M., Mackenzie T.C. A mouse model of in utero transplantation. J. Vis. Exp. 2011; (47). pii: 2303. doi: 10.3791/2303.
  49. Cerletti M., Negri T., Cozzi F. et al. Dystrophic phenotype of canine X-linked muscular dystrophy is mitigated by adenovirus-mediated utrophin gene transfer. Gene Ther. 2003; 10: 750-7.
  50. Zucconi E., Valadares M.C., Vieira N.M. et al. Ringo: Discordance between the molecular and clinical manifestation in a golden retriever muscular dystrophy dog. Neuromuscul. Disord. 2010; 20: 64-70.
  51. Tinsley J.M., Potter A.C., Phelps S.R. et al. Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 1996; 384: 349-53.
  52. Gilbert R., Nalbantoglu J., Petrof B.J. et al. Adenovirus-mediated utrophin gene transfer mitigates the dystrophic phenotype of mdx mouse muscles. Hum. Gene Ther. 1999; 10: 1299-310.
  53. Sonnemann K.J., Heun-Johnson H., Turner A.J. et al. Functional substitution by TAT-utrophin in dystrophin-deficient mice. PLoS Med. 2009; 6: e1000083.
  54. Miura P., Jasmin B.J. Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: how close are we? Trends Mol. Med. 2006; 12: 122-9.
  55. Gauthier-Rouviere C., Bonet-Kerrache A. RhoA leads to upregulation and relocalization of utrophin in muscle fibers. Biochem. Biophys. Res. Commun. 2009; 384: 322-8.
  56. Khurana T.S., Davies K.E. Pharmacological strategies for muscular dystrophy. Nat. Rev. Drug Discov. 2009; 2: 379-90.
  57. Courdier-Fruh I., Briguet A. Utrophin is a calpain substrate in muscle cells. Muscle Nerve 2006; 33: 753-9.
  58. Ljubicic V., Burt M., Jasmin B.J. The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: phenotypic modifiers as pharmacologic targets. FASEB J. 2014; 28(2): 548-68.
  59. Quenneville S.P., Chapdelaine Р., Rousseau J. et al. Nucleofection of Muscle-Derived Stem Cells and Myoblasts with C31 Integrase: Stable Expression of a Full-Length-Dystrophin Fusion Gene by Human Myoblasts. Mol. Ther. 2004; 10: 679-87.
  60. Zhang G., Ludtke J.J., Thioudellet C. et al. Intraarterial delivery of naked plasmid DNA expressing full-length mouse dystrophin in the mdx mouse model of duchenne muscular dystrophy. Hum. Gene Ther. 2004; 15(8): 770-82.
  61. Romero N.B., Braun S., Benveniste O. et al. Phase I study of dystrophin plasmid-based gene therapy in Duchenne/Becker muscular dystrophy. Hum. Gene Ther. 2004; 15(11): 1065-76.
  62. Fassati A., Bresolin N. Retroviral vectors for gene therapy of Duchenne muscular dystrophy. Neurol. Sci. 2000; 21(5 Suppl): S925-7.
  63. Berardi E., Annibali D., Cassano M. et al. Molecular and cell-based the rapies for muscle degenerations: a road under construction. Front Physiol. 2014; 8(5): 119.
  64. Gregorevic P., Chamberlain J.S. Gene therapy for muscular dystrophy - a review of promising progress. Exp. Opinion Biol. Ther. 2003; 3(5): 803-14.
  65. Rodino-Klapac L.R., Janssen P.M.L., Montgomery C.L. et al. A translational approach for limb vascular delivery of the microdystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. J. Transl. Med. 2002; 5: 45.
  66. Wang B., Li J., Fu F.H. Xiao X. Systemic human minidystrophin gene transfer improves functions and life span of dystrophin and dystrophin/utrophin-deficient mice. J. Orthop. Res. 2009; 27(4): 421-6.
  67. Dickson G., Roberts M.L., Wells D.J., Fabb S.A. Recombinant micro-genes and dystrophin viral vectors. Neuromuscul. Disord. 2002; 12(Suppl 1): S40-4.
  68. Rodino-Klapac L.R., Montgomery C.L., Bremer W.G. et al. Persistent expression of FLAG-tagged micro dystrophin in nonhuman primates following intramuscular and vascular delivery. Mol. Ther. 2010; 18(1): 109-17.
  69. Rodino-Klapac L.R., Montgomery C.L., Mendell J.R., Chicoine L.G. AAV-mediated gene therapy to the isolated limb in rhesus macaques. Methods Mol. Biol. 2011; 709: 287-98.
  70. Lostal W., Bartoli M., Bourg N. et al. Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum. Mol. Genet. 2010; 19(10): 1897-907.
  71. Pryadkina M., Lostal W., Bourg N. et al. A comparison of AAV strategies distinguishes overlapping vectors for efficient systemic delivery of the 6.2 kb Dysferlin coding sequence. Mol. Ther. Methods Clin. Dev. 2015; 2: 15009.
  72. Nathwani A.C., Rosales C., McIntosh J. et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol. Ther. 2011; 19: 876-85.
  73. Kotterman M.A., Schaffer D.V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 2014; 15: 445-51.
  74. Strimpakos G., Corbi N., Pisani C. et al. Novel Adeno-Associated Viral Vector Delivering the Utrophin Gene Regulator Jazz Counteracts Dystrophic Pathology in mdx Mice. J. Cell. Physiol. 2014; 229(9): 1283-91.
  75. Liu J., Harper S.Q. RNAi-based Gene Therapy for Dominant Limb Girdle Muscular Dystrophies. Curr. Gene Ther. 2012; 12(4): 307-14.
  76. Aartsma-Rus A., Bremmer-Bout M., Janson A.A. et al. Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy. Neuromuscul. Disord. 2002; 12(Suppl 1): S71-7.
  77. Siva K., Covello G., Denti M.A. Exon-Skipping Antisense Oligonucleotides to Correct Missplicing in Neurogenetic Diseases. Nucleic Acid Ther. 2014; 24(1): 69-86.
  78. Chen H.C., Cheng S.C. Functional roles of protein splicing factors. Biosci. Rep. 2012; 32: 345-59.
  79. McClorey G., Moulton H.M., Iversen P.L. et al. Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Ther. 2006; 13(19): 1373-81.
  80. Walmsley G.L., Arechavala-Gomeza V., Fernandez-Fuente M. et al. A duchenne muscular dystrophy gene hot spot mutation in dystrophin-deficient cavalier king charles spaniels is amenable to exon 51 skipping. PLoS One 2010; 5(1): e8647.
  81. Bish L.T., Sleeper M.M., Forbes S.C. et al. Long-term restoration of cardiac dystrophin expression in golden retriever muscular dystrophy following rAAV6-mediated exon skipping. Mol. Ther. 2012; 20(3): 580-9.
  82. Vulin A., Barthelemy I., Goyenvalle A. et al. Muscle function recovery in golden retriever muscular dystrophy after AAV1-U7 exon skipping. Mol. Ther. 2012; 20(11): 2120-33.
  83. Aartsma-Rus A. Exon skipping for the therapy of Duchenne muscular dystrophy. http://www.humgen.nl/lab-aartsma-rus/ Interview%20with%20Dr.%20Annemieke%20Aartsma-Rus.pdf.
  84. Hoffman E.P., Connor E.M. Orphan drug development in muscular dystrophy: Update on two large clinical trials of dystrophin rescue therapies. Discov. Med. 2013; 16: 233-9.
  85. Peltz S.W., Morsy M., Welch E.M., Jacobson A. Ataluren as an agent for therapeutic nonsense suppression. Annu. Rev. Med. 2013; 64: 407-25
  86. de Semir D., Aran J.M. Targeted gene repair: The ups and downs of a promising gene therapy approach. Curr. Gene Ther. 2006; 6: 481-504.
  87. Немудрый А.А., Валетдинова К.Р., Медведев С.П., Закиян С.М. ^стемы редактирования геномов TALEN и CRISPR/Cas инструменты открытий. Acta Naturae 2014; 6(3): 27-49.
  88. Phase 1 Dose Escalation Study of Autologous T-cells Genetically Modified at the CCR5 Gene by Zinc Finger Nucleases in HIV-Infected Patients. NCT01044654. https://www.clinicaltrials.gov/ct2/show/NC T01044654?term = NCT01044654&rank=1.
  89. Autologous T-Cells Genetically Modified at the CCR5 Gene by Zinc Finger Nucleases SB-728 for HIV (Zinc-Finger). NCT00842634. https://clinicaltrials.gov/show/NCT00842634.
  90. Tebas P., Stein D., Tang W.W. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 2014; 370(10): 901-10.
  91. Dose Escalation Study of Cyclophosphamide in HIV-Infected Subjects on HAART Receiving SB-728-T. NCT01543152. https:// www.clinicaltrials.gov/ct2/show/study/NCT01543152.
  92. Study of Autologous T-cells Genetically Modified at the CCR5 Gene by Zinc Finger Nucleases in HIV-Infected Subjects. NCT01252641. https://www.clinicaltrials.gov/ct2/show/study/NCT01252641.
  93. Repeat Doses of SB-728mR-T After Cyclophosphamide Conditioning in HIV-Infected Subjects on HAART. NCTO2225665. https://www.clinicaltrials.gov/ct2/show/study/NCT02225665.
  94. Ousterout D.G., Kabadi A.M., Thakore P.I. et al. Correction of Dystrophin Expression in Cells From Duchenne Muscular Dystrophy Patients Through Genomic Excision of Exon 51 by Zinc Finger Nucleases. Mol. Ther. 2015; 23(3): 523-32.
  95. Ding Q., Lee Y.K., Schaefer E.A. et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. 2013; 12(2): 238-51.
  96. Ousterout D.G., Perez-Pinera P., Thakore P.I. et al. Reading Frame Correction by Targeted Genome Editing Restores Dystrophin Expression in Cells From Duchenne Muscular Dystrophy Patients. Mol. Ther. 2013; 21(9): 1718-26.
  97. Yin H., Xue W., Chen S. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 2014; 32: 551-3.
  98. Chandrakasan S., Malik P. Gene Therapy for Hemoglobinopathies: The State of the Field and the Future. Hematol. Oncol. Clin. North Am. 2014; 28(2): 199-216.
  99. Ye L., Wang J., Beyer A.I. et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5A32 mutation confers resistance to HIV infection. PNAS USA 2014; 111(26); 9591-6.
  100. Finotti A., Breda L., Lederer C.W. et al. Recent trends in the gene therapy of p-thalassemia. J. Blood Med. 2015; 6: 69-85.
  101. Yang H., Wang C.S., Shivalila A.W. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Casmediated genome engineering. Cell 2013; 154: 1370-9.
  102. Long C., McAnally J.R., Shelton J.M. et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 2014; 345(6201): 1184-8.
  103. Li H.L., Fujimoto N. Sasakawa N. Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9. Stem Cell Reports 2015; 4(1): 143-54.
  104. Oshimura M., Katoh M. Transfer of human artificial chromosome vectors into stem cells. Reproductive biomedicine online 2008. 16(1): 57-69.
  105. Kim J.H., Kononenko A., Erliandri I. et al. Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells. PNAS USA 2011; 108(50): 20048-53.
  106. Лисковых М.А., Куприна Н., Ларионов В., Томилин А.Н. Искусственные хромосомы для генотерапии и тканезамещения. Клеточная трансплантология и тканевая инженерия 2012; VII(4): 8-20.
  107. Hoshiya H., Kazuki Y., Abe S. et al. A highly stable and nonintegrated human artificial chromosome tHAC) containing the 2.4 Mb entire human dystrophin gene. Mol. Ther. 2009; 17(2): 309-17.
  108. Tedesco F.S., Hoshiya H., D'Antona G. et al. Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy. Sci. Transl. Med. 2011; 3(96): 96ra78.
  109. Tedesco F.S., Gerli M.F., Perani L. et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci. Transl. Med. 2012; 4(140): 140ra89.
  110. Yuryeva K., Liskovykh M., Ponomartsev S. et al. Human artificial chromosomes (HAC) as vectors for gene therapy. 3rd International Conference Genetics of Aging and Longevity, 2014: p60.
  111. Isaev A., Eremin I., Pulin A. et al. Development of Human Artificial Chromosomes for Gene Cell Therapy of Muscular Dystrophie. ASGCT 18 Annual meeting, New Orleans, 2015: http://www. abstracts2view.com/asgct/view.php?nu=ASGCT15L1_404.
  112. Ceafalan L.C., Popescu B.O., Hinescu M.E. Cellular Players in Skeletal Muscle Regeneration. BioMed Res. Int. 2014; 2014: http:// dx.doi.org/10.1155/2014/957014.
  113. Одинцова И.А., Чепурненко М.Н., Комарова А.С. Миоса-теллитоциты - камбиальный резерв поперечнополосатой мышечной ткани. Гены и Клетки 2014; IX(1): 6-14.
  114. Rinaldi F., Perlingeiro R.C.R. Stem Cells for Skeletal Muscle Regeneration: Therapeutic Potential and Roadblocks. Transl. Res. 2014; 163(4): 409-17.
  115. Tedesco F.S., Dellavalle A., Diaz-Manera J.J. et al. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. Clin. Invest. 2010; 120(1): 11-9.
  116. Сабурина И.Н. Трансплантация миобластов и стромальных клеток костного мозга человека в скелетные мышцы мыши. Авто-реф. дисс..канд. биол. Наук. М., 2003: 22.
  117. Соколова А.В., Зенин В.В., Михайлов В.М. Структура ней-ромышечных соединений и дифференцировка поперечнополосатых мышечных волокон у мышей mdx после клеточной терапии стволовыми клетками костного мозга. Цитология 2010; 52(5): 399-406.
  118. Киясов А.П., Титова М.А. Способ стимуляции крове-тиворения в облученном организме. Авторское свидетельство № 1797189, 1990.
  119. Jackson K.A., Mi T., Goodell M.A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. PNAS USA 1999; 96(25): 14482-6.
  120. McKinney-Freeman S.L., Jackson K.A., Camargo F.D. et al. Muscle-derived hematopoietic stem cells are hematopoietic in origin. PNAS USA 2002; 99(3): 1341-6.
  121. Ferrari G., Cusella-De Angelis G., Coletta M. Muscle Regeneration by Bone Marrow-Derived Myogenic Progenitors. Science 1998; 279(5356): 1528-30.
  122. Gussoni E., Soneoka Y., Strickland C.D. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401(6751): 390-4.
  123. Gussoni E., Bennett R.R., Muskiewicz K.R. et al. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J. Clin. Invest. 2002; 110(6): 807-14.
  124. Kang P.B., Lidov H.G., White A.J. et al. Inefficient dystrophin expression after cord blood transplantation in Duchenne muscular dystrophy. Muscle Nerve 2010; 41(6): 746-50.
  125. Marchesi C., Belicchi M., Meregalli M. et al. Correlation of Circulating CD133+ Progenitor Subclasses with a Mild Phenotype in Duchenne Muscular Dystrophy Patients. PLoS One 2008; 3(5): e2218.
  126. Abdel-Salam E., Abdel-Meguidr I.E., Shatla R., Korraa S.S. Stromal cell-derived factors in Duchenne muscular dystrophy. Acta Myol. 2010; 29(3): 398-403.
  127. Meregalli M., Farini A., Belicchi M., Torrente Y. CD133( + ) Cells for the Treatment of Degenerative Diseases: Update and Perspectives. Adv. Exp. Med. Biol. 2013; 777: 229-43.
  128. Thanabalasundaram G., Arumalla N., Tailor H.D., Khan W.S. Regulation of differentiation of mesenchymal stem cells into musculoskeletal cells. Curr. Stem Cell Res. Ther. 2012; 7(2): 95-102.
  129. Farini A., Razini P., Erratico S. et al. Cell based therapy for duchenne muscular dystrophy. J. Cell. Physiol. 2009; 221(3): 526-34.
  130. De Angelis L., Berghella L., Coletta M. et al. Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J. Cell Biol. 1999; 147: 869-78.
  131. Minasi M.G., Riminucci M., De Angelis L. et al. The mesoangioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Dev. 2002; 129: 2773-83.
  132. Cossu G., Bianco P. Mesoangioblasts-vascular progenitors for extravascular mesodermal tissues. Curr. Opin. Genet. Dev. 2003; 13(5): 537-42.
  133. Sampaolesi M., Torrente Y., Innocenzi A. et al. Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 2003; 301: 487-92.
  134. Sampaolesi M., Blot S., D'Antona G. et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006; 444: 574-9.
  135. Tedesco F.S., Hoshiya H., D'Antona G. et al. Stem cell mediated transfer of a human artificial chromosome ameliorates muscular dystrophy. Sci. Transl. Med. 2011; 3(96): 96ra78.
  136. Cell Therapy Of Duchenne Muscular Dystrophy by intra-arterial delivery of HLA-identical allogeneic mesoangioblasts. 2011000176-33. https://www.clinicaltrialsregister.eu/ctr-search/ trial/2011-000176-33/IT.
  137. Dellavalle A., Sampaolesi M., Tonlorenzi R. et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol. 2007; 9: 255-67.
  138. Caplan A. All MSCs are pericytes? Cell Stem Cell 2008; 3: 229-30.
  139. Morgan J., Muntoni F. Mural cells paint a new picture of muscle stem cells. Nat. Cell Biol. 2007; 9: 249-51.
  140. Студицкий А.Н. Трансплантация мышц у животных. М.: Медицина, 1977: 248.
  141. Данилов Р.К., Клишов А.А. Миосателлитоциты и проблема камбиальности скелетной мышечной ткани. Успехи современной биологии 1982; 93(3): 409-20.
  142. Данилов Р.К., Одинцова И.А. Мышечная система. В: Руководство по гистологии. Т.1. СПб.: СпецЛит. 2011; 425-41.
  143. Seale P., Sabourin L.A., Girgis-Gabardo A. et al. Pax7 is required for the specification of myogenic satellite cells. Cell 2000; 102: 777-86.
  144. Collins C.A., Olsen I., Zammit P.S. et al. Stem cell function, selfrenewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 2005; 122: 289-301.
  145. Maier F., Bornemann A. Comparison of the muscle fiber diameter and satellite cell frequency in human muscle biopsies. Muscle Nerve 1999; 22: 578-83.
  146. Kadi F., Charifi N., Denis C., Lexell J. Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 2004; 29: 120-7.
  147. Montarras D., Morgan J., Collins C. et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 2005; 309: 2064-7.
  148. Sacco A., Doyonnas R., Kraft P. et al. Self-renewal and expansion of single transplanted muscle stem cells. Nature 2008; 456: 502-6
  149. Karpati G., Pouliot Y., Zubrzycka-Gaarn E. et al. Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation. Am. J. Pathol.1989; 135: 27-32.
  150. Partridge T.A., Morgan J.E., Coulton G.R. et al. Conversion of mdx myofibers from dystrophin negative to positive by injection of normal myoblasts. Nature 1989; 337: 176-9.
  151. Arpke R.W., Darabi R., Mader T.L. et al. A New ImmunoDystrophin-Deficient Model, the NSG-Mdx Mouse, Provides Evidence for Functional Improvement Following Allogeneic Satellite Cell Transplantation. Stem cells 2013; 31(8): 1611-20.
  152. Arpke R.W., Darabi R., Mader T.L. et al. A new immuno-, dystrophin-deficient model, the NSG-mdx(4Cv) mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation. Stem Cells 2013; 31(8): 1611-20.
  153. Skuk D., Tremblay J.P. Cell therapy in muscular dystrophies: many promises in mice and dogs, few facts in patients. Expert Opin. Biol. Ther. 2015; 15(9): 1307-19.
  154. Partridge T., Lu Q.L., Morris G., Hoffman E. Is myoblast transplantation effective? Nat. Med. 1998; 4: 1208.
  155. Beauchamp J.R., Morgan J.E., Pagel C.N., Partridge T.A. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J. Cell Biol. 1999; 144: 1113-22.
  156. Asakura A., Rudnicki M.A. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp. Hematol. 2002; 30: 1339-45.
  157. Qu-Petersen Z., Deasy B., Jankowski R. et al. Identification of a novel population of muscle stem cells in mice: Potential for muscle regeneration. J. Cell Biol. 2002; 157: 851-64.
  158. Torrente Y., Tremblay J.P., Pisati F. et al. Intraarterial injection of muscle-derived CD34( + )Sca-1( + ) stem cells restores dystrophin in mdx mice. J. Cell Biol. 2001; 152: 335-48.
  159. Chirieleison S.M., Feduska J.M., Schugar R.C. et al. Human Muscle-Derived Cell Populations Isolated by Differential Adhesion Rates: Phenotype and Contribution to Skeletal Muscle Regeneration in Mdx/SCID Mice. Tissue Eng., Part A. 2012; 18(3-4): 232-41.
  160. Qu Z., Balkir L., van Deutekom J.C. et al. Development of approaches to improve cell survival in myoblast transfer therapy. J. Cell Biol. 1998; 142: 1257-67.
  161. Deasy B.M., Jankowski R.J., Huard J. Muscle-derived stem cells: characterization and potential for cell-mediated therapy. Blood Cells Mol. Dis. 2001; 27: 924-33.
  162. Mitrano T.I., Grob M.S., Carrion F. et al. Culture and characterization of mesenchymal stem cells from human gingival tissue. J. Periodontol. 2010; 81 (6): 917-25.
  163. Zhang Q.Z., Nguyen A.L., Yu W.H. et al. Human oral mucosa and gingiva: a unique reservoir for mesenchymal stem cells. J. Dent. Res. 2012; 91(11): 1011-8.
  164. Fournier B.P.J., Larjava H., Hakkinen L. Gingiva as a source of stem cells with therapeutic potential. Stem Cells Dev. 2013; 22(24): 3157-77.
  165. Зорин В.Л., Еремин И.И., Рыбко В.А. и др. Слизистая оболочка полости рта - новый источник получения миобластов. Гены и клетки 2014; IX(3A): 76-84.
  166. Chang H., Yoshimoto M., Umeda K. et al. Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells. FASEB J. 2009; 23: 1907-19.
  167. Darabi R., Arpke R.W., Irion S. et al. Human ES- and iPSderived myogenic progenitors restore dystrophin and improve contractility upon transplantation in dystrophic mice. Cell stem cell 2012; 10: 610-9.
  168. Goudenege S., Lebel C., Huot N.B. et al. Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. J. Am. Soc. Gene Ther. 2012; 20: 2153-67.
  169. Filareto A., Parker S., Darabi R. et al. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat. communications 2013; 4: 1549.
  170. Tedesco F.S., Gerli M.F., Perani L. et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci. transl. med. 2012; 4:140ra89.
  171. McPherron A.C., Lawler A.M., Lee S.J. Regulation of skeletal muscle mass in mice by a new TGFbeta superfamily member. Nature 1997; 387: 83-90.
  172. Schuelke M., Wagner K.R., Stolz L.E. et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 2004; 350(26): 2682-8.
  173. White T.A., LeBrasseur N.K. Myostatin and Sarcopenia: Opportunities and Challenges. A Mini-Review Gerontol. 2014; 60: 289-93.
  174. Bogdanovich S., Krag T.O., Barton E.R. et. al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002; 420(6914): 418-21.
  175. Cadena S.M., Tomkinson K.N., Monnell T.E. et al. Administration of a soluble activin type IIB receptor promotes skeletal muscle growth independent of fiber type. J. Appl. Physiol. 2010; 109: 635-42.
  176. Malik V., Rodino-Klapac L. Mendell J.R. Emerging Drugs for Duchenne Muscular Dystrophy. Exp. Opin. Emerg. Drugs 2012; 17(2): 261-77.
  177. Bartoli M., Poupiot J., Vulin A. et al. AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not alpha-sarcoglycan deficiency. Gene Ther. 2007; 14(9): 733-40.
  178. Benabdallah B.F., Bouchentouf M., Rousseau J. et al. Inhibiting myostatin with follistatin improves the success of myoblast transplantation in dystrophic mice. Cell Transplant. 2008; 17(3): 337-50.
  179. Nakatani M., Takehara Y., Sugino H. et al. Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice. FASEB J. 2008; 22(2): 477-87.
  180. Colussi C., Gaetano C., Capogrossi M.C. AAV-dependent targeting of myostatin function: Follistatin strikes back at muscular dystrophy. Gene Ther. 2008; 15: 1075-1076.
  181. Zhu J., Li Y., Lu A. et al. Follistatin improves skeletal muscle healing after injury and disease through an interaction with muscle regeneration, angiogenesis and fibrosis. Am. J. Pathol. 2011; 179(2): 915-30.
  182. Haidet A.M., Rizo L., Handy C. et al. Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. PNAS USA 2008; 105(11): 4318-22.
  183. Rodino-Klapac L.R., Janssen P.M., Shontz K.M. et al. Microdystrophin and follistatin co-delivery restores muscle function in aged DMD model. Hum. Mol. Genet. 2013; 22(24): 4929-37.
  184. Shimizu-Motohashi Y., Asakura A. Angiogenesis as a novel therapeutic strategy for Duchenne muscular dystrophy through decreased ischemia and increased satellite cells. Front Physiol. 2014; 5: 50.
  185. Law P.K., Bertorini T.E., Goodwin T.G. et al. Dystrophin production induced by myoblast transfer therapy in Duchenne muscular dystrophy. Lancet 1990; 336(8707): 114-5.
  186. Skuk D., Tremblay J.P. Clarifying Misconceptions About Myoblast Transplantation in Myology. Mol. Ther. 2014; 22(5): 897-8.
  187. Treatment of Dysphagia in Oculopharyngeal Muscular Dystrophy by Autologous Transplantation of Myoblasts (OPMD). NCT00773227. https://www.clinicaltrials.gov/ct2/show/NCT00773227.
  188. Perie S., Trollet C., Mouly V. et al., Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol. Ther. 2014; 22(1): 219-25.
  189. Transplantation of Myoblasts to Duchenne Muscular Dystrophy (DMD) Patients. NCT02196467. https://www.clinicaltrials. gov/ct2/show/study/NCT02196467.
  190. Stem Cell Therapy in Limb Girdle Muscular Dystrophy. NCT02050776. https://www.clinicaltrials.gov/ct2/show/record/ NCT02050776?term=NCT02050776.
  191. Sharma A., Sane H., Badhe P. et al. A clinical study shows safety and efficacy of autologous bone marrow mononuclear cell therapy to improve quality of life in muscular dystrophy patients. Cell Transplant. 2013; 22(Suppl 1): S127-38.
  192. Sharma A., Sane H., Paranjape A. et al. Autologous bone marrow mononuclear cell transplantation in Duchenne muscular dystrophy - a case report. Am. J. Case Rep. 2014; 15: 128-34.
  193. Study Safety and Efficacy of Bone Marrow Derived Autologous Cells for the Treatment of Muscular Dystrophy. NCT01834066. https:// www.clinicaltrials.gov/ct2/show/NCT01834066?term=NCT01834066.
  194. Stem Cell Therapy in Duchenne Muscular Dystrophy. NCT02241434. https://www.clinicaltrials.gov/ct2/show/study/ NCT02241434?term = NCT02241434.
  195. Torrente Y., Belicchi M., Marchesi C. et al. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant. 2007; 16(6): 563-77.
  196. Intramuscular Transplantation of Muscle Derived Stem Cell and Adipose Derived Mesenchymal Stem Cells in Patients With Facioscapulohumeral Dystrophy (FsHD). NCT02208713. https:// www.clinicaltrials.gov/ct2/results?term = NCT02208713.
  197. Safety and Efficacy of Umbilical Cord Mesenchymal Stem Cell Therapy for Patients With Duchenne Muscular Dystrophy. NCT01610440. https://www.clinicaltrials.gov/ct2/show/NCT016104 40?term = NCT01610440&rank = 1.
  198. Allogeneic Human Umbilical Cord Mesenchymal Stem Cells for a Single Male Patient With Duchenne Muscular Dystrophy (DMD). NCT02235844. https://www.clinicaltrials.gov/ct2/show/ NCT02235844?term=NCT02235844.
  199. Efficacy of Umbilical Cord Mesenchymal Stem Cells in Duchenne Muscular Dystrophy. NCT02285673. https://www. clinicaltrials.gov/ct2/show/NCT02285673?term = NCT02285673.
  200. Efficacy of Stem Cell Therapy in Ambulatory and Nonambulatory Children With Duchenne Muscular Dystrophy - Phase 1-2. NCT02484560. https://www.clinicaltrials.gov/ct2/show/ NCT02484560?term=NCT02484560.
  201. Gene Transfer Therapy for Treating Children and Adults With Limb Girdle Muscular Dystrophy Type 2D (LGMD2D). NCT00494195. https:// www.clinicaltrials.gov/ct2/show/NCT00494195?term=NCT00494195.
  202. Mendell J.R., Rodino-Klapac L.R., Rosales-Quintero X. et al. Limb-girdle muscular dystrophy type 2D gene therapy restores alpha-sarcoglycan and associated proteins. Ann. Neurol. 2009; 66(3): 290-7.
  203. Gene Transfer Clinical Trial for LGMD2D (Alpha-sarcoglycan Deficiency) Using scAAVrh74.tMCK.hSGCA. NCT01976091. https:// www.clinicaltrials.gov/ct2/show/NCT01976091?term=NCT01976091.
  204. Mendell J.R., Rodino-Klapac L.R., Rosales X.Q. et al. Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann. Neurol. 2010; 68(5): 629-38.
  205. Clinical Study of AAV1-gamma-sarcoglycan Gene Therapy for Limb Girdle Muscular Dystrophy Type 2C. NCT01344798. https://www. clinicaltrials.gov/ct2/show/NCT01344798?term = NCT01344798.
  206. Herson S., Hentati F., Rigolet A. A phase I trial of adeno-associated virus serotype 1-y-sarcoglycan gene therapy for limb girdle muscular dystrophy type 2C. Brain 2012; 135(Pt 2): 483-92.
  207. Safety Study of Mini-dystrophin Gene to Treat Duchenne Muscular Dystrophy. NCT00428935. https://www.clinicaltrials.gov/ ct2/show/NCT00428935?term=NCT00428935.
  208. Clinical Intramuscular Gene Transfer Trial of rAAVrh74. MCK.Micro-Dystrophin to Patients With Duchenne Muscular Dystrophy. NCT02376816. https://www.clinicaltrials.gov/ct2/show/ NCT02376816?term = NCT02376816.
  209. Safety and Efficacy Study of Antisense Oligonucleotides in Duchenne Muscular Dystrophy. NCT00159250. https://www. clinicaltrials.gov/ct2/show/NCT00159250?term = NCT00159250.
  210. Kinali M., Arechavala-Gomeza V., Feng L. Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 2009; 8(10): 918-28.
  211. Dose-Ranging Study of AVI-4658 to Induce Dystrophin Expression in Selected Duchenne Muscular Dystrophy (DMD) Patients. NCT00844597. https://www.clinicaltrials.gov/ct2/show/ NCT00844597?term=NCT00844597.
  212. Cirak S., Arechavala-Gomeza V., Guglieri M. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 2011; 378(9791): 595-605.
  213. Efficacy Study of AVI-4658 to Induce Dystrophin Expression in Selected Duchenne Muscular Dystrophy Patients. NCT01396239. https:// www.clinicaltrials.gov/ct2/show/NCT01396239?term=NCT01396239.
  214. Mendell J.R., Rodino-Klapac L.R., Sahenk Z. et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann. Neurol. 2013; 74(5): 637-47.
  215. Efficacy, Safety, and Tolerability Rollover Study of Eteplirsen in Subjects With Duchenne Muscular Dystrophy. NCTO1540409. https://www.clinicaltrials.gov/ct2/show/results/ NCT01540409?term = NCT01540409.
  216. Safety Study of Eteplirsen to Treat Advanced Stage Duchenne Muscular Dystrophy. NCT02286947. https://www.clinicaltrials.gov/ ct2/show/results/NCT02286947?term = NCT02286947.
  217. Safety Study of Eteplirsen to Treat Early Stage Duchenne Muscular Dystrophy. NCT02420379. https://www.clinicaltrials.gov/ ct2/show/NCT02420379?term = NCT02420379.
  218. Confirmatory Study of Eteplirsen in DMD Patients (PROMOVI). NCT02255552. https://www.clinicaltrials.gov/ct2/show/ NCT02255552?term = NCT02255552.
  219. A Phase I/II, Open Label, Escalating Dose, Pilot Study to Assess Effect, Safety, Tolerability and PK of Multiple SC Doses of Drisapersen in Patients With Duchenne Muscular Dystrophy and to Assess the Potential for IV Dosing as an Alternative Route of Administration. NCT01910649. https://www.clinicaltrials.gov/ct2/ show/NCT01910649.
  220. Goemans N.M., Tulinius M., van den Akker J.T. et al. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N. Engl. J. Med. 2011; 364(16): 1513-22.
  221. Open Label Study of GSK2402968 in Subjects With Duchenne Muscular Dystrophy. NCT01480245. https://www.clinicaltrials.gov/ ct2/show/study/NCT01480245?term = NCT01480245.
  222. Drisapersen Duchenne Muscular Dystrophy (DMD) Treatment Protocol. NCT01890798. https://www.clinicaltrials.gov/ ct2/show/NCT01890798?term = NCT01890798.
  223. A Study of the Safety, Tolerability & Efficacy of Longterm Administration of Drisapersen in US & Canadian Subjects. NCT01803412. https://www.clinicaltrials.gov/ct2/show/ NCT01803412?term = NCT01803412.
  224. Follistatin Gene Transfer to Patients With Becker Muscular Dystrophy and Sporadic Inclusion Body Myositis. NCT01519349. https:// www.clinicaltrials.gov/ct2/show/NCT01519349?term = NCT01519349.
  225. Clinical Intramuscular Gene Transfer of rAAV1.CMV. huFollistatin344 Trial to Patients With Duchenne Muscular Dystrophy. NCT02354781. https://www.clinicaltrials.gov/ct2/ results?term = NCT02354781.
  226. Study Evaluating MYO-029 in Adult Muscular Dystrophy. NCT00104078. https://www.clinicaltrials.gov/ct2/show/NCT00104078.
  227. Zhang C., Feng H.Y., Huang S.L. et al. Therapy of Duchenne muscular dystrophy with umbilical cord blood stem cell transplantation. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2005; 22(4): 399-405.
  228. Romero N.B., Benveniste O., Payan C. et al. Current protocol of a research phase I clinical trial of full-length dystrophin plasmid DNA in Duchenne/Becker muscular dystrophies. Part I: clinical protocol. Neuromuscul. Disord. 2002; 12(Suppl 1): S49-51.
  229. Fardeau M., Braun S., Romero N.B. et al. About a phase I gene therapy clinical trial with a full-length dystrophin gene-plasmid in Duchenne/Becker muscular dystrophy. J. Soc. Biol. 2005; 199(1): 29-32.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies