Halloysite nanotubes is a promising biocompatible material for «smart» composites with encapsulation of biologically active substances



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Halloysite clay mineral is found in kaolin deposits and is a multilayered nanotube with external diameter of 50 nm inner diameter 15 nm and length1-2 micron. Halloysite is a rolled kaolin and it has found applications in fine porcelain, polymeric composites, tissue engineering, antimicrobial coatings and in cosmetics. Halloysite is also applied as microvesicles to carry drugs and enzymes. It is used as an additive to improve the mechanical strength of polymers. Halloysite is non-toxic to living organisms and the environmentally safe. This review summarizes recent data on the structure of halloysite and its applications.

Full Text

Restricted Access

About the authors

E. V Rozhina

Kazan (Volga region) Federal University

A. A Danilushkina

Kazan (Volga region) Federal University

EA. A Naumenko

Kazan (Volga region) Federal University

U. M Lvov

Kazan (Volga region) Federal University; Microgeneration Institute, Technical University of Louisiana

R. F Fahrullin

Kazan (Volga region) Federal University

References

  1. Bailey S.W. Structures of layer silicates. Crystal Structures of Clay Minerals and their X-ray Identification tG.W. Brindley & G. Brown, editors). Monograph 5, Mineralogical Society, London. 1980; 1-123.
  2. Guggenheim S., Eggleton R.A. Crystal chemistry, classification, and identification of modulated layer silicates. Hydrous phyllosilicates. Hydrous Phyllosilicates [exclusive of micas) [S.W. Bailey, editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Chelsea, MI. 1988; 675-725.
  3. Rabiskova M. Halloysiteinteresting nanotubular carrier for drugs. CeskaSlov Farm. 2012; 61(6): 60-255.
  4. Hofmann U., Endell K., Wilm D. Rontgenographishe und kolloidchemishe Untersuchungun uber ton. Angewandte Chemie 1934; 47: 539-47.
  5. Churchman G.J., Carr R.M. Stability fields of hydration states of a halloysite. Am. Mineralt. 1972; 57: 914-23.
  6. Churchman G.J., Carr R.M. The definition and nomenclature of halloysites. Clays and Clay Minerals 1975; 23: 382-8.
  7. Lvov Y., Aerov A., Fakhrullind R. Clay nanotube encapsulation for functional biocomposites. Adv. Colloid Interface Sci. 2014; 207: 189-98.
  8. Joussein E., Petit S., Churchman J. et al. Halloysite clay minerals-a review. Clay Minerals 2005; 40: 383-426.
  9. Lvov Y., Abdullayev E. Functional polymer-clay nanotube composites with sustain release of chemical agents. Progress Polymer Sci. 2013, 38: 1690-719.
  10. Chigira M., Yokoyama O. Weathering profile of non-welded ignimbrite and the water infiltration behavior within it in relation to the generation of shallow landslides. Engineering Geol. 2005; 78: 187-207.
  11. Lee S.Y., Gilkes R.J. Groundwater geochemistry and composition of hardpans in southwestern Australian regolith. Geoderma 2005; 126: 59-84.
  12. Harvey C.C., Murray H.H. The geology, mineralogy and exploitation of halloysite clays of Northland, New Zealand. Kaolin: Genesis and Utilization (H.H. Murray, W.M. Bundy, C.C. Harvey, editors). The Clay Minerals Society, Boulder, CO. 1993; 233-48.
  13. Harvey C.C., Murray H.H. Industrial clays in the 21st century: A perspective of exploration, technology and utilization. Applied Clay Sci. 1997; 11: 285-310.
  14. Harvey C.C. Halloysite for high quality ceramics. Industrial Clays, 2nd edition. Industrial Minerals Special Review tT. Kendall, editor). Metal Bulletin, London. 1996; 71-73.
  15. Karpoff A.M. Cenozoic and Mesozoic sediments from the Pigafetta Basin.Proceedings of the Ocean Drilling Program, ODP (R. Larson, Y. Lancelot et al., editors), Scientific Results, 129,College Station, TX. 1992; 3-30.
  16. Marumo K., Hattori K.H. Seafloor hydro-thermal clay alteration at Jade in the back-arc Okinawa Trough: Mineralogy, geochemistry and isotope characteristics. Geochimica et Halloysite ± A review 419 Cosmochimica Acta. 1999; 63:2785-2804.
  17. Harvey C.C. Exploration and assessment of kaolin clays formed from acid volcanic rocks on the Coromandel Peninsula, North Island, New Zealand. Applied Clay Science. 1997; 11:381-392.
  18. Su D. S. The Use of Natural Materials in Nanocarbon Synthesis. ChemSusChem. 2009; 2:1009-1020.
  19. Singer A., Zarei M., Lange F.M. et al. Halloysite characteristics and formation in the northern Golan Heights. Geoderma. 2004; 123:279-295.
  20. Joussein E., Petit S., Churchman J. et al. Halloysite clay minerals-a review. Clay Minerals. 2005; 40:383-426.
  21. Bailey S.W. Halloysite у A critical assessment. Surface Chemistry Structure and Mixed Layering of Clays. Proceedings of the 9th International Clay Conference 1989 (V.C. Farmer &Y. Tardy, editors). Sciences GeAologiques, MeAmoire 86, Strasbourg, France. 1990; 89-98.
  22. White G.N., Dixon J.B. Kaolin-serpentine minerals. Soil Mineralogy with Environmental Applications (J.B. Dixon and D.G. Schulze, editors). Soil Science Society of America,Madison, Wisconsin.2002; 389-414.
  23. Ziegler K., Hsieh J.C.C., Chadwick O.A., Kelly E.F., Hendricks D.M. & Savin S.M. Halloysite as a kinetically controlled end product of arid-zone basalt weathering. Chemical Geology. 2003; 202: 461-478.
  24. Churchman G.J., Davy T.J., Aylmore L.A.G. et al. Characteristics of fine pores in some halloysites. Clay Minerals. 1995; 30:89-98
  25. Adamo P., Violante P., Wilson M.J. Tubular and spheroidal halloysite in pyroclastic deposits in the area of the Roccamonfina volcano (southern Italy). Geoderma 2001; 99: 295-316.
  26. Churchman G.J., Theng B.K.G. Interactions of halloysites with amides: Mineralogical factors affecting complex formation. Clay Minerals 1984; 19: 161-75.
  27. Ward C., Roberts F.I. Occurrence of spherical halloysite in bituminous coals of the Sydney basin, Australia. Clays and Clay Minerals 1990; 38: 501-6.
  28. Johnson S.L., Guggenheim S., Koster Van Groos A.F. Thermal stability of halloysite by high-pressure differential thermal analysis. Clays and Clay Minerals 1990; 38: 477-84.
  29. Hart R.D., Gilkes R.J., Siradz S. et al. The nature of soil kaolins from Indonesia and Western Australia. Clays and Clay Minerals 2002; 50: 198-207.
  30. Lvov Y. M., Price R., Gaber B., Ichinose I. Thin film nanofabrication via layer-by-layer adsorption of tubule halloysite, spherical silica, proteins and polycations. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2002; 198-200.
  31. Alhuthali A.M., Low I.M. Influence of halloysite nanotubes on physical and mechanical properties of cellulose fibres reinforced vinyl ester composites. J. Reinforced Plastics and Composites 2013; 32(4): 233-47.
  32. Kadi S., Lellou S., Marouf-Khelifa K. et al. Preparation, characterization and application of thermally treated Algerian halloysite. Microp. Mesopor. Mat. 2012; 158: 47-54.
  33. Lu D., Chen H., Wu J. et al. Direct measurements of the Youngs modulus of single halloysite nanotube using a transmission electron microscope with a bending stage. J. Nanosci. Nanotech. 2011; 9: 7789-93.
  34. Abdullayev E., Price R., Shchukin D. et al. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. Applied Mat. Interfaces. 2009; 2: 1437-42.
  35. Wei W., Minullina R., Abdullayev E. et al. Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Adv. 2014; 4: 488-94.
  36. Levis S.R., Deasy P.B. Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride. Int. J. Pharm. 2003; 253: 145-57.
  37. Tari G., Bobos I., Gomes C.S.F., Ferreira J.M.F. Modification or surface charge properties during kaolinite to halloysite 7 А transformation. J. Colloid Interf. Sci. 1999; 210: 360-6.
  38. Price R.R., Gaber B.P., Lvov Y.M. In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dinucleotide from halloysite. J. Microencapsulation 2001; 18(6): 713-22.
  39. Kelly H. M., Deasy P. B., Ziaka E., Claffey N. Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. Int. J. Pharm. 2004; 274: 167-83.
  40. Suh Y.J., Kil D.S., Chung K.S. et al. Natural nanocontainer for the controlled delivery of glycerol as moisturizing agent. J. Nanosci. Nanotech. 2001; 11(1): 661-5.
  41. Forsgren J., Jamstorp E., Bredenberg S. et al. A ceramic drug delivery vehicle for oral administration of highly potent opioids. J. Pharm. Sc. 2010; 99(1):219-226.
  42. Mitchell M.J., Chen C.S., Ponmudi V. et al. E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells. J. Controlled Release 2012; 160: 609-17.
  43. Vergaro V., Abdullayev E., Lvov Y.M. et al. Cytocompability and uptake of halloysite clay nanotubes. Biomacromolecules 2010; 11: 820-6.
  44. Cavallaro G., Lazzara G., Milioto S. Dispersions of nanoclays of different shapes into aqueous and solid biopolymeric matrices. Extended physicochemical study. Langmuir 2011; 27(3): 1158-67.
  45. Lai X., Agarwal M., Lvov Y. et al. Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture. J. Appl/ Toxic. 2014; 34.
  46. Zhang Y., Chen Y., Zhang H. Study on the safety of bridge structure. J. Inorg. Biochem. 2013; 118: 59.
  47. Konnova S.A., Sharipova I.R., Demina T.A. et al. Biomimetic Cell-Mediated Three-Dimensional Assembly of Halloysite Nanotubes. Chem. Commun. 2013; 49: 4208-10.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies