CURRENT STATE OF TISSUE ENGINEERING FOR CARTILAGE REGENERATION



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The development of biomedical cell products for damaged cartilage recovery is an important direction of regenerative medicine. The review examines the main issues related to biodegradable tissue scaffold and hydrogel properties: selection of appropriate biomaterials, cells loaded and other supplements that could provide the best conditions for cartilage recovery. The results of in vitro and in vivo studies, as well as clinical trials registered at the National Institutes of Health database (ClinicalTrials.gov), are considered.

Full Text

Restricted Access

About the authors

E. E Beketov

A. Tsyb Medical Radiological Research Center, the branch of the National Medical Research Radiological Center

Email: beketov.ee@yandex.ru

E. V Isaeva

A. Tsyb Medical Radiological Research Center, the branch of the National Medical Research Radiological Center

P. V Shegay

National Medical Research Radiological Center of the Ministry of Health of the Russian Federation

S. A Ivanov

A. Tsyb Medical Radiological Research Center, the branch of the National Medical Research Radiological Center

A. D Kaprin

National Medical Research Radiological Center of the Ministry of Health of the Russian Federation

References

  1. Басок Ю.Б., Севастьянов В.И. Технологии тканевой инженерии и регенеративной медицины в лечении дефектов хрящевой ткани суставов. Вестник трансплантологии и искусственных органов 2016; 18(4): 102-22
  2. Greene G.W., Banquy X., Lee D.W. et al. Adaptive mechanically controlled lubrication mechanism found in articular joints. PNAS USA 2011; 108(13): 5255-9.
  3. Loeser R.F., Collins J.A., Diekman B.O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 2016; 12(7): 412-20.
  4. Loeser R.F., Goldring S.R., Scanzello C.R. et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012; 64: 1697-707.
  5. Божокин М.С., Божкова С.А., Нетылько Г.И. Возможности современных клеточных технологий для восстановления поврежденого суставного хряща (аналитический обзор литературы). Травматология и ортопедия России 2016; 22(3): 122-34
  6. Pap T., Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis - two unequal siblings. Nat. Rev. Rheumatol. 2015; 11(10): 606-15.
  7. Suri S., Walsh D.A. Osteochondral alterations in osteoarthritis. Bone 2012; 51(2): 204-11.
  8. Wang T., He C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 2018; 44: 38-50.
  9. Liu M., Yu X., Huang F. et al. Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics 2013; 36(11): 868-73.
  10. Salzmann G.M., Niemeyer P., Hochrein A. et al. Articular Cartilage Repair of the Knee in Children and Adolescents. Orthop. J. Sports Med. 2018; 6(3): 2325967118760190.
  11. Деев Р.В., Исаев АА., Кочиш А.Ю. и соавт. Клеточные технологии в травматологии и ортопедии: пути развития. Гены и Клетки 2007; 2(4): 18-30.
  12. Копелев П.В., Александрова С.А., Нащекина Ю.А. и соавт. Разработка метода модификации полилактидных скаффолдов хондро-итинсульфатом с целью создания тканеинженерных конструкций для восстановления хрящевой ткани. Бюллетень инновационных технологий 2017; 4(4): 39-43
  13. Jiang Y., Lin H., Tuan R.S. Overview: state of the art and future prospectives for cartilage repair. In: Grassel S., Aszodi A., editors. Cartilage. Volume 3: repair strategies and regeneration. Springer International Publishing AG; 2017. p. 1-34
  14. Ma Q., Tian T., Liu N. et al. Application of stem cells and the factors influence their differentiation in cartilage tissue engineering. In: Lin Y., editor. Cartilage regeneration. Springer International Publishing AG; 2017; Chapter 1. p. 1-20.
  15. Коржикова С.В., Фролов Е.В., Тепляшин З.А. и соавт. Перспективы клинического применения мультипотентных мезенхимных стромальных клеток для регенерации хрящевой гиалиновой ткани. Биомедицина 2017; 2: 23-32
  16. Чайлахян Р.К., Шехтер А.Б., Тельпухов В.И. и соавт. Восстановление неполнослойных повреждений гиалинового хряща суставов кроликов трансплантацией мультипотентных мезенхимальных стромальных клеток костного мозга. Вестник травматологии и ортопедии им. Н.Н. Приорова 2015; 1: 23-7
  17. Копелев П.В., Нащекина Ю.А., Александрова С.А. Оценка жизнеспособности хондроцитов кролика при культивировании на поли-лактидных скаффолдах, предназначенных для тканевой инженерии хрящевой ткани. Бюллетень инновационных технологий 2017; 2(2): 31-5
  18. Skardal A. Bioprinting essentials of cell and protein viability. In: Atala A., Yoo J.J., editors. Essentials of 3D biofabrication and translation. Elsevier Inc.; 2017; Chapter 1. p. 1-17.
  19. Hussey G.S., Dziki J.L., Badylak S.F. Extracellular matrix- based materials for regenerative medicine. Nature Reviews. Materials 2018; 3: 159-73.
  20. Alakpa E.V., Jayawarna V., Burgess K.E.V. et al. Improving cartilage phenotype from differentiated pericytes in tunable peptide hydrogels. Sci. Rep. 2017; 7(1): 6895.
  21. Arlov O., Steinwachs M., Skjak-Braek G. et al. Biomimetic sulphated alginate hydrogels suppress IL-1 p-induced inflammatory responses in human chondrocytes. Eur. Cell. Mater. 2017; 33: 76-89.
  22. Beigi M.H., Atefi A., Ghanaei H.R. et al. Activated platelet-rich plasma improves cartilage regeneration using adipose stem cells encapsulated in a 3D alginate scaffold. J. Tissue. Eng. Regen. Med. 2018; 12(6): 1327-37.
  23. Chen W., Li C., Peng M. et al. Autologous nasal chondrocytes delivered by injectable hydrogel for in vivo articular cartilage regeneration. Cell Tissue Bank 2018; 19(1): 35-46.
  24. Park H., Lee H.J., An H. et al. Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. Carbohydr. Polym. 2017; 162: 100-7.
  25. Ruvinov E., Cohen S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: From ocean algae to patient bedside. Adv. Drug Deliv. Rev. 2016; 96: 54-76.
  26. Сергеева Н.С., Комлев В.С., Свиридова И.К. Некоторые физикохимические и биологические характеристики трехмерных конструкций на основе альгината натрия и фосфатов кальция, полученных методом 30-печати и предназначенных для реконструкции костных дефектов. Гены и Клетки 2015; 10(2): 39-45
  27. Gao C., 0eng Y., Feng P. et al. Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int. J. Mol. Sci. 2014; 15: 4714-32.
  28. Ming L., Zhipeng Y., Fei Y. et al. Microfluidic-based screening of res-veratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect. Artif. Cells Nanomed. Biotechnol. 2018; 46 Suppl 1: 336-46.
  29. Mouser V.H.M., 0autzenberg N.M.M., Levato R. et al. Ex vivo model unravelling cell distribution effect in hydrogels for cartilage repair. ALTEX 2018; 35(1): 65-76.
  30. Otto I.A., Levato R., Webb W.R. et al. Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 30 hydrogel culture. Eur. Cell. Mater. 2018; 35:132-50.
  31. Saghebasl S., 0avaran S., Rahbarghazi R. et al. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. J. Biomater. Sci. Polym. Ed. 2018; 29(10): 1185-206.
  32. Waghmare N.A., Arora A., Bhattacharjee A. et al. Sulfated polysaccharide mediated TGF-p1 presentation in pre-formed injectable scaffolds for cartilage tissue engineering. Carbohydr. Polym. 2018; 193: 62-72.
  33. Horbert V., Xin L., Foehr P. et al. In vitro analysis of cartilage regeneration using a collagen type I hydrogel (CaReS) in the bovine cartilage punch model. Cartilage 2018; 10(3): 346-63.
  34. Sun X., Wang J., Wang Y. et al. Collagen-based porous scaffolds containing PLGA microspheres for controlled kartogenin release in cartilage tissue engineering. Artif. Cells Nanomed. Biotechnol. 2017; 46(8): 1957-66.
  35. Wang K.H., Wan R., Chiu L.H. et al. Effects of collagen matrix and bioreactor cultivation on cartilage regeneration of a full-thickness critical-size knee joint cartilage defects with subchondral bone damage in a rabbit model. PLoS One 2018; 13(5): e0196779.
  36. Qi C., Liu J., Jin Y. et al. Photo-crosslinkable, injectable sericin hydrogel as 30 biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials 2018; 163: 89-104.
  37. Ribeiro V.P., da Silva Morais A., Maia F.R. et al. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta Biomater. 2018; 72: 167-81.
  38. Wang Y., Kim H.J., Vunjak-Novakovic G. et al. Stem cell-based tissue engineering with silk biomaterials. Biomaterials 2006; 27: 6064-82.
  39. Baranwal A., Kumar A., Priyadharshini A. et al. Chitosan: An undisputed bio- fabrication material for tissue engineering and biosensing applications. Int. J. Biol. Macromol. 2018; 110: 110-23.
  40. Liu C., Liu 0., Wang Y. et al. Glycol chitosan/oxidized hyaluronic acid hydrogels functionalized with cartilage extracellular matrix particles and incorporating BMSCs for cartilage repair. Artif. Cells Nanomed. Biotechnol. 2018; 46 Suppl 1: 721-32.
  41. Fujihara Y., Hikita A., Takato T. et al. Roles of macrophage migration inhibitory factor in cartilage tissue engineering. J. Cell. Physiol. 2018; 233(2): 1490-9.
  42. Paduszynski P., Aleksander-Konert E., Zajdel A. et al. Changes in expression of cartilaginous genes during chondrogenesis of Wharton's jelly mesenchymal stem cells on three-dimensional biodegradable poly(L-lactide-co-glycolide) scaffolds. Cell. Mol. Biol. Lett. 2016; 21: 14.
  43. Sonomoto K., Yamaoka K., Kaneko H. et al. Spontaneous differentiation of human mesenchymal stem cells on poly-lactic-co-glycolic acid nanofiber scaffold. PLoS One 2016; 11(4): e0153231.
  44. Zhang Y., Zhang J., Chang F. et al. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel. Mater. Sci. Eng. C Mater. Biol. Appl. 2018; 88: 79-87.
  45. Cruz-Acuna R., Garcia A.J. Synthetic hydrogels mimicking basement membrane matrices to promote cell- matrix interactions. Matrix Biol. 2017; 57-58: 324-33.
  46. Park J.S., Woo 0.G., Sun B.K. et al. In vitro and in vivo test of PEG/ PCL-based hydrogel scaffold for cell delivery application. J. Control. Release 2007; 124(1-2): 51-9.
  47. Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010; 31: 4639-56.
  48. Studer 0., Cavalli E., Formica F.A. et al. Human chondroprogenitors in alginate-collagen hybrid scaffolds produce stable cartilage in vivo. J. Tissue Eng. Regen. Med. 2017; 11(11): 3014-26.
  49. Sumayya A.S., Muraleedhara Kurup G. Biocompatibility of subcutaneously implanted marine macromolecules cross-linked bio-composite scaffold for cartilage tissue engineering applications. J. Biomater. Sci. Polym. Ed. 2018; 29(3): 257-76.
  50. Feng Q., Lin S., Zhang K. et al. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomater. 2017; 53: 329-42.
  51. ebnath T., Shalini U., Kona L.K. et al. 0evelopment of 30 alginate encapsulation for better chondrogenic differentiation potential than the 20 pellet system. J. Stem Cell Res. Ther. 2015; 5(4): 1000276.
  52. Radhakrishnan J., Subramanian A., Sethuraman S. Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration. Carbohydr. Polym. 2017; 175: 63-74.
  53. He A., Xia H., Xiao K. et al. Cell yield, chondrogenic potential, and regenerated cartilage type of chondrocytes derived from ear, nasoseptal, and costal cartilage. J. Tissue Eng. Regen. Med. 2018; 12(4): 1123-32.
  54. Zhu 0., Wang H., Trinh P. et al. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials 2017; 127: 132-40.
  55. Cipriani F., Kruger M., de Torre I.G. et al. Cartilage Regeneration in Preannealed Silk Elastin-Like Co-Recombinamers Injectable Hydrogel Embedded with Mature Chondrocytes in an Ex Vivo Culture Platform. Biomacromolecules 2018; 19(11): 4333-47.
  56. Jung A., Makkar P., Amirian J. et al. A novel hybrid multichannel biphasic calcium phosphate granule-based composite scaffold for cartilage tissue regeneration. J. Biomater. Appl. 2018; 32(6): 775-87.
  57. Jiang L.B., Su 0.H., Liu P. et al. Shape-memory collagen scaffold for enhanced cartilage regeneration: native collagen versus denatured collagen. Osteoarthritis Cartilage 2018; 26(10): 1389-99.
  58. Kashi M., Baghbani F., Moztarzadeh F. et al. Green synthesis of degradable conductive thermosensitive oligopyrrole/chitosan hydrogel intended for cartilage tissue engineering. Int. J. Biol. Macromol. 2018; 107(Pt B): 1567-75.
  59. Zhou T., Li X., Li G. et al. Injectable and thermosensitive TGF-p1-loaded PCEC hydrogel system for in vivo cartilage repair. Sci. Rep. 2017; 7(1): 10553.
  60. Zhu W., Cui H., Boualam B. et al. 30 bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Nanotechnology 2018; 29(18): 185101.
  61. Mallick S.P., Singh B.N., Rastogi A. et al. 0esign and evaluation of chi-tosan/poly(l-lactide)/pectin based composite scaffolds for cartilage tissue regeneration. Int. J. Biol. Macromol. 2018; 112: 909-20.
  62. Копелев П.В., Нащекина Ю.А., Александрова С.А. Сравнительный анализ трехмерных полилактидных скаффолдов различной пористости, предназначенных для восстановления хрящевой ткани. Бюллетень инновационных технологий 2018; 3(7): 25-31
  63. Ahn C.B., Kim Y., Park S.J. et al. 0evelopment of arginine-glycine-aspartate-immobilized 30 printed poly(propylene fumarate) scaffolds for cartilage tissue engineering. J. Biomater. Sci. Polym. Ed. 2018; 29(7-9): 917-31.
  64. Naranda J., Susec M., Maver U. et al. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Sci. Rep. 2016; 6: 28695.
  65. Nava M.M., 0raghi L., Giordano C. et al. The effect of scaffold pore size in cartilage tissue engineering. J. Appl. Biomater. Funct. Mater. 2016; 14(3): e223-9.
  66. Wang C., Hou W., Guo X. et al. Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2017; 79: 507-15.
  67. Morgese G., Cavalli E., Rosenboom J.G. et al. Cyclic Polymer Grafts That Lubricate and Protect 0amaged Cartilage. Angew. Chem. Int. Ed. Engl. 2018; 57(6): 1621-6.
  68. Rederstorff E., Rethore G., Weiss P. et al. Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering. J. Tissue Eng. Regen. Med. 2017; 11(4): 1152-64.
  69. Sancho-Tello M., Forriol F., Martin de Llano J.J. et al. Biostable scaffolds of polyacrylate polymers implanted in the articular cartilage induce hyaline-like cartilage regeneration in rabbits. Int. J. Artif. Organs 2017; 40(7): 350-7.
  70. Щелкунова Е.И., Воропаева А.А., Корель А.В. и соавт. Заселение деминерализованного костного матрикса клетками хондрогенного ряда. Комплексные проблемы сердечно-сосудистых заболеваний 2018; 2: 102-11.
  71. Zhou G., Jiang H., Yin Z. et al. In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction. EBioMedicine 2018; 28: 287-302.
  72. Gao G., Hubbell K., Schilling A.F. et al. Bioprinting cartilage tissue from mesenchymal stem cells and PEG hydrogel. Methods Mol. Biol. 2017; 1612: 391-8.
  73. Ghosh P., Gruber S.M.S., Lin C.Y. et al. Microspheres containing decellularized cartilage induce chondrogenesis in vitro and remain functional after incorporation within a poly(caprolactone) filament useful for fabricating a 30 scaffold. Biofabrication 2018; 10(2): 025007.
  74. Севастьянов В.И., Басок Ю.Б., Григорьев А.М. и соавт. Применение технологии тканевой инженерии для формирования хрящевой ткани человека в проточном биореакторе. Вестник трансплантологии и искусственных органов 2017; 3: 81-92.
  75. Park Y.B., Ha C.W., Kim J.A. et al. Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthritis Cartilage 2017; 25(4): 570-80.
  76. Moeinzadeh S., Monavarian M., Kader S. et al. Sequential zonal chon-drogenic differentiation of mesenchymal stem cells in cartilage matrices. Tissue Eng. Part A. 2018; 25(3-4): 234-47.
  77. Yin L., Wu Y., Yang Z. et al. Characterization and application of size-sorted zonal chondrocytes for articular cartilage regeneration. Biomaterials 2018; 165: 66-78.
  78. Fehrer C., Lepperdinger G. Mesenchymal stem cell aging. Exp. Gerontol. 2005; 40(12): 926-30.
  79. Pestka J.M., Bode G., Salzmann G. et al. Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee: when can success or failure be predicted? Am. J. Sports Med. 2014; 42(1): 208-15.
  80. Stuart M.P., Matsui R.A.M., Santos M.F.S. et al. Successful low-cost scaffold-free cartilage tissue engineering using human cartilage progenitor cell spheroids formed by micromolded nonadhesive hydrogel. Stem Cells Int. 2017; 2017: 7053465.
  81. Yamagata K., Nakayamada S., Tanaka Y. Use of mesenchymal stem cells seeded on the scaffold in articular cartilage repair. Inflamm. Regen. 2018; 38: 4.
  82. Hildner F., Eder M.J., Hofer K. et al. Human platelet lysate successfully promotes proliferation and subsequent chondrogenic differentiation of adipose-derived stem cells: a comparison with articular chondrocytes. J. Tissue Eng. Regen. Med. 2015; 9(7): 808-18.
  83. Nguyen V.T., Cancedda R., Descalzi F. Platelet lysate activates quiescent cell proliferation and reprogramming in human articular cartilage: Involvement of hypoxia inducible factor 1. J. Tissue Eng. Regen. Med. 2018; 12(3): e1691-703.
  84. Li F., Truong V.X., Fisch P. et al. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomater. 2018; 77: 48-62.
  85. Liu Q., Wang J., Chen Y. et al. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3. Acta Biomater. 2018; 76: 29-38.
  86. Sykes J.G., Kuiper J.H., Richardson J.B. et al. Impact of human platelet lysate on the expansion and chondrogenic capacity of cultured human chondrocytes for cartilage cell therapy. Eur. Cell. Mater. 2018; 35: 255-67.
  87. Santo V.E., Popa E.G., Mano J.F. et al. Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta Biomater. 2015; 19: 56-65.
  88. Toyokawa N., Fujioka H., Kokubu T. et al. Electrospun synthetic polymer scaffold for cartilage repair without cultured cells in an animal model. Arthroscopy 2010; 26(3): 375-83.
  89. Cools P., Mota C., Lorenzo-Moldero I. et al. Acrylic acid plasma coated 3D scaffolds for cartilage tissue engineering applications. Sci. Rep. 2018; 8(1): 3830.
  90. Sawada Y., Sugimoto A., Osaki T. et al. Ajuga decumbens stimulates mesenchymal stem cell differentiation and regenerates cartilage in a rabbit osteoarthritis model. Exp. Ther. Med. 2018; 15(5): 4080-8.
  91. Cheng X., Li K., Xu S. et al. Applying chlorogenic acid in an alginate scaffold of chondrocytes can improve the repair of damaged articular cartilage. PLoS One 2018; 13(4): e0195326.
  92. Burnouf T., Strunk D., Koh M.B. et al. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 2016; 76: 371-87.
  93. Pereira R.C., Scaranari M., Benelli R. et al. Dual effect of platelet lysate on human articular cartilage: a maintenance of chondrogenic potential and a transient proinflammatory activity followed by an inflammation resolution. Tissue Eng. Part A 2013; 19(11-12): 1476-88.
  94. Gilbertie J.M., Long J.M., Schubert A.G. et al. Pooled platelet-rich plasma lysate therapy increases synoviocyte proliferation and hyaluronic acid production while protecting chondrocytes from synoviocyte-derived inflammatory mediators. Front. Vet. Sci. 2018; 5: 150.
  95. Blaney Davidson E.N., van der Kraan P.M., van den Berg W.B. TGF-beta and osteoarthritis. Osteoarthritis Cartilage 2007; 15(6): 597-604.
  96. Shen J., Li S., Chen D. TGF-p signaling and the development of osteoarthritis. Bone Res. 2014; 2. pii: 14002.
  97. Ozturk E., Hobiger S., Despot-Slade E. et al. Hypoxia regulates RhoA and Wnt/p-catenin signaling in a context-dependent way to control re-differentiation of chondrocytes. Sci. Rep. 2017; 7(1): 9032.
  98. Xue J., He A., Zhu Y. et al. Repair of articular cartilage defects with acellular cartilage sheets in a swine model. Biomed. Mater. 2018; 13(2): 025016.
  99. Stanish W.D., McCormack R., Forriol F. et al. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J. Bone Joint Surg. Am. 2013; 95(18): 1640-50.
  100. Shive M.S., Stanish W.D., McCormack R. et al. BST-CarGel treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage 2015; 6(2): 62-72.
  101. Anders S., Goetz J., Schubert T. et al. Treatment of deep articular talus lesions by matrix associated autologous chondrocyte implantation-results at five years. Int. Orthop. 2012; 36(11): 2279-85.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies