Neuroglia in rat spinal cord contusion injury with cell-mediated delivery of a combination of VEGF165, GDNF, and NCAM1 genes in combination with epidural electrical stimulation

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Neural networks disturbed due to spinal cord injury are capable to restore that is largely determined by post-traumatic remodeling. It is known that information exchange between neurons is carried out by electrical impulse, which ensures the transmission of excitation in synapses, that is realized through neurotrophic factors according to the concept of neurotrophic interactions. Objective: to study the effect of a combination of epidural electrostimulation above and below the site of neurotrauma during training on the treadmill and intrathecal administration of human umbilical cord blood mononuclear cells, which simultaneously delivered three therapeutic genes encoding vascular endothelial growth factor (VEGF165), glial neurotrophic factor (GDNF) and neuronal cell adhesion molecule (NCAM1), to post-traumatic reorganization of neuroglia cells in a model of dosed concussion injury of rat spinal cord at the Th8-Th9 level. 30 days after the simulation of neurotrauma by the immunofluorescence method, a change in the number of macro- and microglia cells in the segment caudal from the damage epicenter was revealed. Electrostimulation did not affect the number of GFAP+-cells in the gray matter, but the combined effect of gene and electrotherapy restrained the increase in their number. Differences were found in the reactions of astrocytes in white and gray matter in response to electrical stimulation. In the zones of gray matter, the supporting effect of the combination of gene and electrotherapy on the number of Olig2+-cells was most clearly manifested. In this group of animals, the inhibition of the increase in the number of Iba1+-microglia cells in the gray matter can also be interpreted as a positive factor contributing to neuroregeneration.

Full Text

Restricted Access

About the authors

F. O Fadeev

Kazan State Medical University

Email: gostev.andrei@mail.ru
Kazan, Russia

F. V Bashirov

Kazan State Medical University

Email: gostev.andrei@mail.ru
Kazan, Russia

AA. A Izmajlov

Kazan State Medical University

Email: gostev.andrei@mail.ru
Kazan, Russia

M. E Sokolov

Kazan State Medical University

Email: gostev.andrei@mail.ru
Kazan, Russia

V. A Markosyan

Kazan State Medical University

Email: gostev.andrei@mail.ru
Kazan, Russia

R. R Garifulin

Kazan State Medical University

Email: gostev.andrei@mail.ru
Kazan, Russia

M. A Davleeva

Kazan State Medical University

Email: gostev.andrei@mail.ru
Kazan, Russia

I. A Pahalina

Kazan State Medical University

Email: gostev.andrei@mail.ru
Kazan, Russia

I. S Minyazeva

Kazan State Medical University

Email: gostev.andrei@mail.ru
Kazan, Russia

R. V Shevchenko

Kazan State Medical University

Email: gostev.andrei@mail.ru
Kazan, Russia

YU. A CHelyshev

Kazan State Medical University

Email: gostev.andrei@mail.ru
Kazan, Russia

R. R Islamov

Kazan State Medical University

Email: gostev.andrei@mail.ru
Kazan, Russia

References

  1. Potter K., Saifuddin A. Pictorial review: MRI of chronic spinal cord injury. Br. J. Radiol. 2003; 76(905): 347-52.
  2. Hamid S., Hayek R. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur. Spine J. 2008; 17(9): 1256-69.
  3. Capogrosso M., Wagner F., Gandar J. et al. Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics. Nat. Protoc. 2018; 13(9): 2031-61.
  4. Gerasimenko Y.P., Avelev V.D., Nikitin O.A. et al. Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci. Behav. Physiol. 2003; 33(3): 247-54.
  5. Lavrov I., Dy C., Fong A. et al. Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J. Neurosci. 2008; 28(23): 6022-9.
  6. Gill M.L., Grahn P.J., Calvert J.S. et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nature Medicine 2018; 24(11): 1677-82.
  7. Lim S.T., Airavaara M., Harvey B.K. Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol. Res. 2010; 61(1): 14-26.
  8. Walthers C.M., Seidlits S.K. Gene delivery strategies to promote spinal cord repair. Biomark. Insights 2015; Suppl 1: 11-29.
  9. Hodgetts S.I., Harvey A.R. Neurotrophic Factors Used to Treat Spinal Cord Injury. Vitam. Horm. 2017; 104: 405-57.
  10. Izmailov A.A., Povysheva T.V., Bashirov F.V. et al. Spinal Cord Molecular and Cellular Changes Induced by Adenoviral Vector- and Cell-Mediated Triple Gene Therapy after Severe Contusion. Front. Pharmacol. 2017; 8: 813.
  11. Измайлов А.А., Соколов М.Е., Баширов Ф.В. и др. Сравнительный анализ эффективности прямой и клеточно-опосредованной генной терапии крыс с контузионной травмой спинного мозга. Гены и Клетки 2018; XII(4): 53-9.
  12. Islamov R.R., Izmailov A.A., Sokolov M.E. et al. Evaluation of direct and cell-mediated triple-gene therapy in spinal cord injury in rats. Brain Res. Bull. 2017; 132(2): 44-52.
  13. Chen N., Newcomb J., Garbuzova-Davis S. et al. Human Umbilical Cord Blood Cells Have Trophic Effects on Young and Aging Hippocampal Neurons in Vitro. Aging Dis. 2010; 1(3): 173-90.
  14. Greenberg D.A., Jin K. From angiogenesis to neuropathology. Nature 2005; 438(7070): 954-9.
  15. Shweiki D., Itin A., Soffer D. et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359(6398): 843-5.
  16. Rocha S.M., Cristovâo A.C., Campos F.L. et al. Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol. Dis. 2012; 47(3): 407-15.
  17. Сафиуллов З.З., Гаранина Е.Е., Измайлов А.А. и др. Адресная миграция и выживание генетически модифицированных мононуклеарных клеток крови пуповины человека после трансплантации G93A мышам с моделью бокового амиотрофического склероза. Гены и Клетки 2015; X(4): 1-4.
  18. Islamov R.R., Rizvanov A.A., Mukhamedyarov M.A. et al. Symptomatic improvement, increased life-span and sustained cell homing in amyotrophic lateral sclerosis after transplantation of human umbilical cord blood cells genetically modified with adeno-viral vectors expressing a neuro-protective factor and a neural cell adhesion molecule. Curr. Gene Ther. 2015; 15(3): 266-76.
  19. Islamov R.R., Rizvanov A.A., Fedotova V.Y. et al. Tandem Delivery of Multiple Therapeutic Genes Using Umbilical Cord Blood Cells Improves Symptomatic Outcomes in ALS. Mol. Neurobiol. 2017; 54(6): 4756-63.
  20. Anderson M.A., Burda J.E., Ren Y. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016; 532(7598): 195-200.
  21. Ohtake Y., Li S. Molecular mechanisms of scar-sourced axon growth inhibitors. Brain Research 2015; 1619: 22-35.
  22. Anderson M.A., Ao Y., Sofroniew M.V. Heterogeneity of reactive astrocytes. Neuroscience Letters 2014; 565: 23-9.
  23. Liddelow S.A., Guttenplan K.A., Clarke L.E. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481-7.
  24. Assinck P., Duncan G.J., Plemel J.R. et al. Myelinogenic plasticity of oligodendrocyte precursor cells following spinal cord contusion injury. J. Neurosci. 2017; 37(36): 8635-54.
  25. Lee J.C., Mayer-Proschel M., Rao M.S. Gliogenesis in the central nervous system. GLIA 2000; 30(2): 105-21.
  26. Taylor R.A., Sansing L.H. Microglial responses after ischemic stroke and intracerebral hemorrhage. Clinical and Developmental Immunology 2013; 2013: 746068.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies