The hipotises of the immune system's role in carcinogenesis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The presented controversial hypothesis is an attempt to reflect on the role of the adaptive immune response in carcinogenesis. It is a well-known fact that the most of the signaling pathways which are participating in embryogenesis and regeneration are also active in tumor growth. Considering their presence in different evolutionary groups, there's such a contradiction that with same mechanisms of proliferation, animals with high regenerative potential are less predisposed to malignancy than mammals. Comparing these two groups, it's being discovered that despite the importance of immune control as a factor impeding carcinogenesis, the animals' immune system with high regenerative potential is less developed. The above is a reading of the complete or partial absence of the adaptive link of immunity. These described distinctions have formed the basis of the hypothesis of the procarcino-genic role of the adaptive immune response.

Full Text

Restricted Access

About the authors

Y. K Slepov

I.I. MechnikovNorth-Western State Medical University

Email: slepovurij95@gmail.com

M. A Laushkin

I.I. MechnikovNorth-Western State Medical University

R. V Deev

I.I. MechnikovNorth-Western State Medical University

References

  1. Dvorak H.F. Tumors: wounds that do not heal-redux. Cancer Immunol. Res. 2015; 3(1): 1-11.
  2. Peiris T.H., Hoyer K.K., Oviedo N.J. Innate immune system and tissue regeneration in planarians: an area ripe for exploration. Semin. Immunol. 2014; 26(4): 295-302.
  3. Ratajczak M.Z., Bujko K., Mack A. et al. Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia 2018; 32: 2519-26.
  4. Nestor J. O., Wendy S.B. Regeneration: The origin of cancer or a possible cure. Semin. Cell Dev. Biol. 2009; 20(5): 557-64.
  5. Matejuk A. Skin. Immunity. Arch. Immunol. Ther. Exp. 2018; 66(1): 45-54.
  6. Tomar N., De R.K. A brief outline of the immune system. Methods Mol. Biol. 2014; 1184: 3-12.
  7. Gombart A.F., Pierre A., Maggini S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients 2020; 12(1): 236-77.
  8. Mamuka G.B., Baranov E. From cancer to rejuvenation: incomplete regeneration as the missing link (Part I: the same origin, different outcomes). Future Science OA. 2020; 6(3): FSO450.
  9. Yu J.M., Sun W., Wang Z.H. et al. TRIB3 supports breast cancer stemness by suppressing FOXO1 degradation and enhancing SOX2 transcription. Nat. Commun. 2019; 10(1): 5720-36.
  10. Гаршин В.Г. Воспалительные разрастания эпителия, их биологическое значение и отношение к проблеме рака. Москва, Ленинград: Издательство Медгиз; 1939.
  11. Murtaugh L.C., Keefe M.D. Regeneration and repair of the exocrine pancreas. Ann. Rev. Physiol. 2015; 77: 229-49.
  12. Bonventre J.V. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J.Am. Soc. Nephrol. 2003; 14(1): 55-61.
  13. Murugan A.K. mTOR: Role in cancer, metastasis and drug resistance. Semin Cancer Biol. 2019; 59: 92-111.
  14. Mossmann D., Park S., Hall M.N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 2018; 18(12): 744-57.
  15. Taciak B., Pruszynska I., Kiraga L. et al. Wnt signaling pathway in development and cancer. J. Physiol. Pharmacol. 2018; 69(2): 185-96.
  16. Groner B., von Manstein V. Jak Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Mol. Cell Endocrinol. 2017; 451: 1-14.
  17. Chen S., Li F., Xu D. et al. The function of RAS mutation in cancer and advances in its drug research. Curr. Pharm. Des. 2019; 25(10): 1105-14.
  18. Riverso M., Montagnani V., Stecca B. KLF4 is regulated by RAS/ RAF/MEK/ERK signaling through E2F1 and promotes melanoma cell growth. Oncogene 2017; 36(23): 3322-33.
  19. Rizzino A., Wuebben E.L. Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim. Biophys. Acta 2016; 1859(6): 780-91.
  20. Novak D., Huser L., Elton J.J. et al. SOX2 in development and cancer biology. Semin. Cancer Biol. 2020; 67(1): 74-82.
  21. Lee C.J., Sung P.L., Kuo M.H. et al. Crosstalk between SOX2 and cytokine signaling in endometrial carcinoma. Sci. Rep. 2018; 8(1): 17550-62.
  22. Arnold K., Sarkar A., Yram M.A. et al. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 2011; 9(4): 317-29.
  23. Jiang W.L., Zhang P.F., Li G.F. et al. Oct-4 is associated with gastric cancer progression and prognosis. OncoTargets Ther. 2016; 9: 517-22.
  24. Fatima N., Srivastava A.N., Nigam J. et al. Clinicopathological correlation of cancer stem cell markers Oct-4 and CD133 expression as prognostic factor in malignant lesions of gallbladder: An immunohistochemical study. Indian. J. Pathol. Microbiol. 2019; 62(3): 384-90.
  25. Lu H., Zhang L.H., Yang L. et al. The PI3K/Akt/FOXO3a pathway regulates regeneration following spinal cord injury in adult rats through TNF-a and p27kip1 expression. Int. J. Mol. Med. 2018; 41(5): 2832-8.
  26. Yang C., Liu X., Zhao K. miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1a pathway and enhances bone regeneration in critical size defects. Stem Cell Res. Ther. 2019; 10(1): 65.
  27. Murakami M., Ichisaka T., Maeda M. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol. Cell. Biol. 2004; 24(15): 6710-8.
  28. Marquard F.E., Jucker M. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer. Biochem. Pharmacol. 2020; 172: 113729. doi: 10.1016/j.bcp.2019.113729.
  29. Sharma V.R., Gupta G.K., Sharma A.K. PI3K/Akt/mTOR intracellular pathway and breast cancer: factors, mechanism and regulation. Curr. Pharm. Des. 2017; 23(11): 1633-8.
  30. Ediriweera M.K., Tennekoon K.H., Samarakoon S.R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin. Cancer Biol. 2019; 59: 147-60.
  31. Zhan T., Rindtorff N., Boutros M. Wnt signaling in cancer. Oncogene 2017; 36(11): 1461-73.
  32. Girardi F., Le Grand F. Wnt signaling in skeletal muscle development and regeneration. Prog. Mol. Biol. Transl. Sci. 2018; 153: 157-79.
  33. Leucht P., Lee S., Yim N. Wnt signaling and bone regeneration: Can't have one without the other. Biomaterials 2019; 196: 46-50.
  34. Zhou Y., Jin J., Feng M., Zhu D. Wnt signaling in inflammation in tissue repair and regeneration. Curr. Protein Pept. Sci. 2019; 20(8): 829-43.
  35. Sackett S.D., Gao Y., Shin S. Foxl1 promotes liver repair following cholestatic injury in mice. Lab. Invest. 2009; 89(12): 1387-96.
  36. Chen X., Deng M., Ma L. et al. Inhibitory effects of forkhead box L1 gene on osteosarcoma growth through the induction of cell cycle arrest and apoptosis. Oncol. Rep. 2015; 34(1): 265-71.
  37. Zhang G., He P., Gaedcke J. et al. FOXL1, a novel candidate tumor suppressor, inhibits tumor aggressiveness and predicts outcome in human pancreatic cancer. Cancer Res. 2013; 73(17): 5416-25.
  38. Tresini M., Lorenzini A., Torres C. et al. Modulation of replicative senescence of diploid human cells by nuclear ERK signaling. J. Biol. Chem. 2007; 282(6): 4136-51.
  39. Schmid C.A., Robinson M.D., Scheifinger N.A. et al. DUSP4 deficiency caused by promoter hypermethylation drives JNK signaling and tumor cell survival in diffuse large B. cell lymphoma. J. Exp. Med. 2015; 212(5): 775-92.
  40. Hijiya N., Tsukamoto Y., Nakada C. et al. Genomic loss of DUSP4 contributes to the progression of intraepithelial neoplasm of pancreas to invasive carcinoma. Cancer Res. 2016; 76(9): 2612-25.
  41. Zhu X., Liu R., Guan J. et al. Jak2a regulates erythroid and myeloid hematopoiesis during zebrafish embryogenesis. Int. J. Med. Sci. 2017; 14(8): 758-63.
  42. Owen K.L., Brockwell N.K., Parker B.S. JAK-STAT signaling: A doubleedged sword of immune regulation and cancer progression. Cancers (Basel) 2019; 11(12): 2002-28.
  43. Groner B., Hennighausen L. The versatile regulation of cellular events by Jak-Stat signaling: from transcriptional control to microtubule dynamics and energy metabolism. Horm. Mol. Biol. Clin. Investig. 2012; 10(1): 193-200.
  44. Fey D., Matallanas D., Rauch J. et al. The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells. Semin. Cell Dev. Biol. 2016; 58: 96-107.
  45. Delire B., Starkel P. The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur. J. Clin. Invest. 2015; 45(6): 609-23.
  46. Yue J., Xiong W., Ferrell J.E. B-Raf and C-Raf are required for Ras-stimulated p42 MAP kinase activation in Xenopus egg extracts. Oncogene 2006; 25(23): 3307-15.
  47. Koera K., Nakamura K., Nakao K. et al. K-ras is essential for the development of the mouse embryo. Oncogene 1997; 15(10): 1151-9.
  48. Borday C., Cabochette P., Parain K. et al. Antagonistic crossregulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation. Dev. 2012; 139(19): 3499-509.
  49. Skoda A.M., Simovic D., Karin V. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn. J. Basic Med. Sci. 2018; 18(1): 8-20.
  50. Yoshida G.J. Emerging roles of Myc in stem cell biology and novel tumor therapies. J. Exp. Clin. Cancer Res. 2018; 37: 173. doi: 10.1186/ s13046-018-0835-y.
  51. Christen B., Robles V., Raya M. et al. Regeneration and reprogramming compared. BMC Biol. 2010; 8: 5-19.
  52. Gogna R., Shee K., Moreno E. Cell competition during growth and regeneration. Ann. Rev. Genet. 2015; 49: 697-718.
  53. Aster J.C., Pear W.S., Blacklow S.C. The varied roles of notch in cancer. Ann. Rev. Pathol. 2017; 12: 245-75.
  54. Saturnino A.P., Lust K., Wittbrodt J. Notch signalling patterns retinal composition by regulating atoh7 during post-embryonic growth. Dev. 2018; 145: dev169698. doi: 10.1242/dev.169698.
  55. Dobrokhotov O., Samsonov M., Sokabe M. et al. Mechanoregulation and pathology of YAP/TAZ via Hippo and non-Hippo mechanisms. Clin. Trans. Med. 2018; 7(1): 23-37.
  56. Noguchi S., Saito A., Nagase T. YAP/TAZ signaling as a molecular link between fibrosis and cancer. Int. J. Mol. Sci. 2018; 19(11): 3674-97.
  57. Meyn M.A. 3rd, Schreiner S.J., Dumitrescu T.P. et al. SRC family kinase activity is required for murine embryonic stem cell growth and differentiation. Mol. Pharmacol. 2005; 68(5): 1320-30.
  58. Sirvent A., Mevizou R., Naim D. et al. Src family tyrosine kinases in intestinal homeostasis, regeneration and tumorigenesis. Cancers (Basel) 2020; 12(8): 2014. doi: 10.3390/cancers12082014.
  59. Hong A.W., Meng Z., Guan K.L. The Hippo pathway in intestinal regeneration and disease. Nat. Rev. Gastroenterol. Hepatol. 2016; 13(6): 324-37.
  60. Moya I.M., Halder G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 2019; 20(4): 211-26.
  61. Wu Z, Guan K.L. Hippo Signaling in Embryogenesis and Development. Trends Biochem. Sci. 2021; 46(1): 51-63.
  62. Bowling S., Di Gregorio A., Sancho M. et al. P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Nat. Commun. 2018; 9(1): 1763-75.
  63. Charni M., Aloni-Grinstein R., Molchadsky A. et al. p53 on the crossroad between regeneration and cancer. Cell Death Differ. 2017; 24(1): 8-14.
  64. Zhang J., Lee E.Y., Liu Y. pRB and E2F4 play distinct cell-intrinsic roles in fetal erythropoiesis. Cell Cycle 2010; 9(2): 371-6.
  65. Chang W.Y., Andrews J., Carter D.E. et al. Differentiation and injury-repair signals modulate the interaction of E2F and pRB proteins with novel target genes in keratinocytes. Cell Cycle 2006; 5(16): 1872-9.
  66. Luo Q., Wu X., Chang W. et al. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ. 2020; 27(6): 1981-97.
  67. Kent L.N., Leone G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 2019; 19(6): 326-38.
  68. Balkwill F. TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev. 2006; 25(3): 409-16.
  69. Tao Y., Wang M., Chen E. et al. Liver Regeneration: Analysis of the main relevant signaling molecules. Mediators Inflamm. 2017; 2017: 4256352. doi: 10.1155/2017/4256352.
  70. Toder V., Fein A., Carp H. et al. TNF-alpha in pregnancy loss and embryo maldevelopment: a mediator of detrimental stimuli or a protector of the fetoplacental unit? J. Assist. Reprod. Genet. 2003; 20(2): 73-81.
  71. Hata A., Chen Y.G. TGF-p Signaling from receptors to Smads. Cold Spring Harb. Perspect. Biol. 2016; 8(9): a022061. doi: 10.1101/cshper-spect.a022061.
  72. Miyazono K., Katsuno Y., Koinuma D. et al. Intracellular and extracellular TGF-p signaling in cancer: some recent topics. Front. Med. 2018; 12(4): 387-411.
  73. Delaney K., Kasprzycka P., Ciemerych M.A. et al. The role of TGF-p1 during skeletal muscle regeneration. Cell Biol. Int. 2017; 41(7): 706-15.
  74. Wagner E.F., Nebreda A.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer 2009; 9(8): 537-49.
  75. Li Q.V., Dixon G., Verma N. et al. Genome-scale screens identify JNK-JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nat. Genet. 2019; 51(6): 999-1010.
  76. Majidinia M., Sadeghpour A., Yousefi B. The roles of signaling pathways in bone repair and regeneration. J. Cell Physiol. 2018; 233(4): 2937-48.
  77. Weinberg R.A. The biology of cancer. London: Taylor & Francis Group Publishers; 2007.
  78. Yazawa S., Umesono Y., Hayashi T. et al. Planarian Hedgehog/ Patched establishes anterior-posterior polarity by regulating Wnt signaling. PNAS USA 2009; 106(52): 22329-34.
  79. Currie K.W., Molinaro A.M., Pearson B.J. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain. Elife 2016; 5: e19735. doi: 10.7554/eLife.19735.
  80. Peiris T.H., Ramirez D., Barghouth P.G. et al. The Akt signaling pathway is required for tissue maintenance and regeneration in planarians. BMC Dev. Biol. 2016; 16: 7.
  81. Hosoda K., Morimoto M., Motoishi M. et al. Simple blood-feeding method for live imaging of gut tube remodeling in regenerating planarians. Dev. Growth Differ. 2016; 58(3): 260-9.
  82. Mehta A.S., Singh A. Insights into regeneration tool box: An animal model approach. Dev. Biol. 2019; 453(2): 111-29.
  83. Lee Y., Nachtrab G., Klinsawat P.W. et al. Ras controls melanocyte expansion during zebrafish fin stripe regeneration. Dis. Models Mech. 2010; 3(7-8): 496-503
  84. Singh B.N., Weaver C.V, Garry M.G. Hedgehog and wnt signaling pathways regulate tail regeneration. Stem Cells Dev. 2018; 27(20): 1426-37.
  85. Nakatani Y., Nishidate M., Fujita M. et al. Migration of mesenchymal cell fated to blastema is necessary for fish fin regeneration. Dev. Growth Differ. 2008; 50(2): 71-83.
  86. Hu J., Li J., Yue X. et al. Expression of the cancer stem cell markers ABCG2 and OCT-4 in right-sided colon cancer predicts recurrence and poor outcomes. Oncotarget. 2017; 8(17): 28463-70.
  87. Yoshida G.J. Emerging roles of Myc in stem cell biology and novel tumor therapies J. Exp. Clin. Cancer Res. 2018; 37(1): 173-93.
  88. Nguyen C., Yi C. YAP/TAZ signaling and resistance to cancer therapy. Trends Cancer 2019; 5(5): 283-96.
  89. Hong B., van den Heuvel A.P., Prabhu V.V. et al. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Curr. Drug Targets 2014; 15(1): 80-9.
  90. Wang Q., Zou Y., Nowotschin S. et al. The p53 family coordinates wnt and nodal inputs in mesendodermal differentiation of embryonic stem cells. Cell Stem Cell 2017; 20(1): 70-86.
  91. Hauton C., Smith V.J. Adaptive immunity in invertebrates: a straw house without a mechanistic foundation. Bioessays 2007; 29: 1138-46.
  92. Chalmers I.W., Hoffmann K.F. Platyhelminth Venom Allergen-Like (VAL) proteins: revealing structural diversity, class-specific features and biological associations across the phylum. Parasitology 2012; 139: 1231-45.
  93. Rodriguez R.M., Lopez-Vazquez A., Lopez-Larrea C. Immune systems evolution. Adv. Exp. MedBiol. 2012; 739: 237-51.
  94. Pasupuleti M., Schmidtchen A., Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit. Rev. Biotechnol. 2012; 32: 143-71.
  95. Altincicek B., Vilcinskas A. Comparative analysis of septic injury-inducible genes in phylogenetically distant model organisms of regeneration and stem cell research, the planarian Schmidtea mediterranea and the cnidarian Hydra vulgaris. Front. Zool. 2008; 5: 6-18.
  96. Morita M., Best J.B. Electron microscopic studies of planarian regeneration. II. Changes in epidermis during regeneration. J. Exp. Zool. 1974; 187: 345-73.
  97. Morita M. Phagocytic response of planarian reticular cells to heat-killed bacteria. Hydrobiologia 1991; 227: 193-9.
  98. Morita M. Structure and function of the reticular cell in the planarian Dugesia dorotocephala. Hydrobiologia 1995; 305: 189-96.
  99. Isolani M.E., Abril J.F., Salo E. et al. Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration. PLoS One 2013; 8(2): e55649. doi: 10.1371/journal. pone.0055649.
  100. Rodgers A.K., Smith J.J., Voss S.R. Identification of immune and non-immune cells in regenerating axolotl limbs by single-cell sequencing. Exp. Cell. Res. 2020; 394(2): 112149. doi: 10.1016/j.yexcr.2020.112149.
  101. Godwin J.W., Pinto A.R., Rosenthal N.A. Macrophages are required for adult salamander limb regeneration. PNAS USA 2013; 110(23): 9415-20.
  102. Bolanos-Castro L.A., Walters H.E., Garcia Vazquez R.O. et al. Immunity in salamander regeneration: Where are we standing and where are we headed? Dev. Dyn. 2020. doi: 10.1002/dvdy.251.
  103. Leigh N.D., Dunlap G.S., Johnson K. et al. Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution. Nat. Commun. 2018; 9(1): 5153-67.
  104. Lai S.L., Marin-Juez R., Stainier D.Y.R. Immune responses in cardiac repair and regeneration: a comparative point of view. Cell. Mol. Life Sci. 2019; 76(7): 1365-80.
  105. Wang J. Neutrophils in tissue injury and repair. Cell Tissue Res. 2018; 371(3): 531-9.
  106. Fahmy G.H., Sicard R.E. A role for effectors of cellular immunity in epimorphic regeneration of amphibian limbs. In Vivo 2002; 16(3): 179-84.
  107. Hui S.P., Sheng D.Z., Sugimoto K., et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell. 2017; 43(6): 659-72.
  108. Fior J. Salamander regeneration as a model for developing novel regenerative and anticancer therapies. J. Cancer 2014; 5(8): 715-9.
  109. Yatim K.M., Lakkis F.G. A brief journey through the immune system. Clin. J.Am. Soc. Nephrol. 2015; 10(7): 1274-81.
  110. Kollmann T.R., Crabtree J., Rein-Weston A. et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J. Immunol. 2009; 183: 7150-60.
  111. Yerkovich S.T., Wikstrom M.E., Suriyaarachchi D. et al. Postnatal development of monocyte cytokine responses to bacterial lipopolysaccha-ride. Pediatr. Res. 2007; 62: 547-52.
  112. Carr R. Neutrophil production and function in newborn infants. Br.J. Haematol. 2000; 110: 18-28.
  113. De Wit D., Olislagers V., Goriely S. et al. Blood plasmacytoid dendritic cell responses to CpG oligodeoxynucleotides are impaired in human newborns. Blood 2004; 103: 1030-2.
  114. Walker J.C., Smolders M.A., Gemen E.F. et al. Development of lymphocyte subpopulations in preterm infants. Scand. J. Immunol. 2011; 73: 53-8.
  115. Ygberg S., Nilsson A. The developing immune system - from foetus to toddler. Acta Paediatr. 2012; 101(2): 120-7.
  116. Strunk T., Temming P., Gembruch U., et al. Differential maturation of the innate immune response in human fetuses. Pediatr. Res. 2004; 56: 219-26.
  117. Sautois B., Fillet G., Beguin Y. Comparative cytokine production by in vitro stimulated mononucleated cells from cord blood and adult blood. Exp. Hematol. 1997; 25: 103-8.
  118. Tolar J., Hippen K.L., Blazar B.R. Immune regulatory cells in umbilical cord blood: T regulatory cells and mesenchymal stromal cells. Br.J. Haematol. 2009; 147: 200-6.
  119. Van den Berg J.P., Westerbreek E.A.M., van der Klis F.R.M. et al. Transplacental transport of IgG antibodies to preterm infants: a review of the literature. Early Hum. Dev. 2011; 87: 67-72.
  120. Morbach H., Eichhorn E.M., Liese J.G. et al. Reference values for B cell subpopulations from infancy to adulthood. Clin. Exp. Immunol. 2010; 162(2): 271-9.
  121. Lesina M., Kurkowski M.U., Ludes K. et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 2011; 19: 456-69.
  122. Bellone G., Smirne C., Mauri F.A. et al. Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol., Immunother. 2006; 55: 684-98.
  123. Korkaya H., Kim G.I., Davis A. et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol. Cell 2012; 47: 570-84.
  124. Fujisawa T., Joshi B.H., Puri R.K. IL-13 regulates cancer invasion and metastasis through IL-13Ralpha2 via ERK/AP-1 pathway in mouse model of human ovarian cancer. Int. J. Cancer 2012; 131: 344-56.
  125. Kioi M., Kawakami M., Shimamura T. et al. Interleukin-13 receptor alpha2 chain: a potential biomarker and molecular target for ovarian cancer therapy. Cancer 2006; 107: 1407-18.
  126. Kawakami M., Kawakami K., Kasperbauer J.L. et al. Interleukin-13 receptor alpha2 chain in human head and neck cancer serves as a unique diagnostic marker. Clin. Cancer Res. 2003; 9: 6381-8.
  127. Lasek W., Mackiewicz A., Czajka A. et al. Antitumor effects of the combination therapy with TNF-alpha gene-modified tumor cells and interleukin 12 in a melanoma model in mice. Cancer Gene Ther. 2000; 7(12): 1581-90.
  128. Waterston A.M., Salway F., Andreakos E. et al. TNF autovaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model. Br.J. Cancer 2004; 90(6): 1279-84.
  129. Lee J. 3,3'-Diindolylmethane Inhibits TNF-a- and TGF-p-induced epithelial-mesenchymal transition in breast cancer cells. Nutr. Cancer 2019; 71(6): 992-1006.
  130. Raaschou P., Frisell T., Askling J. et al. TNF inhibitor therapy and risk of breast cancer recurrence in patients with rheumatoid arthritis: a nationwide cohort study. Ann. Rheum. Dis. 2015; 74(12): 2137-43.
  131. Shelton E., Laharie D., Scott F.I. et al. Cancer recurrence following immune-suppressive therapies in patients with immune-mediated diseases: a systematic review and meta-analysis. Gastroenterol. 2016; 151(1): 97-109.
  132. Shi Q., Shen L., Gan J. et al. Integrative analysis identifies DNMTs against immune-infiltrating neutrophils and dendritic cells in colorectal cancer. Epigen. 2019; 14(4): 392-404.
  133. Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141(1): 39-51.
  134. Prizment A.E., Vierkant R.A., Smyrk T.C. et al. Tumor eosinophil infiltration and improved survival of colorectal cancer patients: Iowa Women's Health Study. Mod. Pathol. 2016; 29(5): 516-27.
  135. Xie F., Liu L.B., Shang W.Q. et al. The infiltration and functional regulation of eosinophils induced by TSLP promote the proliferation of cervical cancer cell. Cancer Lett. 2015; 364(2): 106-17.
  136. Yin J.J., Selander K., Chirgwin J.M. et al. TGF-p signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 1999; 103(2): 197-206.
  137. Becker C., Fantini M.C., Schramm C. et al. TGF-p suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 2004; 21(4): 491-501.
  138. Hodgins J.J., Khan S.T., Park M.M. Killers 2.0: NK cell therapies at the forefront of cancer control. J. Clin. Invest. 2019; 129(9): 3499-510.
  139. Terren I., Orrantia A., Vitalle J. et al. NK cell metabolism and tumor microenvironment. Front. Immunol. 2019; 10: 2277-8.
  140. Fang F., Xiao W., Tian Z. NK cell-based immunotherapy for cancer. Semin. Immunol. 2017; 31: 37-54.
  141. Pockley A.G., Vaupel P., Multhoff G. NK cell-based therapeutics for lung cancer. Expert Opin. Biol. Ther. 2020; 20(1): 23-33.
  142. Bi J., Tian Z. NK cell dysfunction and checkpoint immunotherapy. Front. Immunol. 2019; 10: 1999-2009.
  143. Sun J.C., Lanier L.L. Is there Natural Killer cell memory and can it be harnessed by vaccination? NK cell memory and immunization strategies against infectious diseases and cancer. Cold Spring Harb. Perspect. Biol. 2018; 10(10): a029538. doi: 10.1101/cshperspect.a029538.
  144. Wang Y., Liu J., Burrows P.D. et al. B Cell development and maturation. Adv. Exp. Med. Biol. 2020; 1254: 1-22.
  145. Mizukami M., Hanagiri T., Yasuda M. et al. Antitumor effect of antibody against a SEREX-defined antigen (UOEH-LC-1) on lung cancer xenotransplanted into severe combined immunodeficiency mice. Cancer Res. 2007; 67(17): 8351-7.
  146. Tokunaga R., Naseem M., Lo J.H. et al. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat. Rev. 2019; 73: 10-9.
  147. Pan M.R., Hou M.F., Chang H.C. et al. Cyclooxygenase-2 up-regu-lates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells. J. Biol. Chem. 2008; 283(17): 11155-63.
  148. Garg R., Blando J.M., Perez C.J. et al. Protein kinase C epsilon cooperates with PTEN loss for prostate tumorigenesis through the CXCL13-CXCR5 pathway. Cell Rep. 2017; 19(2): 375-88.
  149. Wang, J.-Y. Editors. B cells in immunity and tolerance. Singapore: Springer Singapore; 2020.
  150. Zhang Y., Gallastegui N., Rosenblatt J.D. Regulatory B cells in anti-tumor immunity. Int. Immunol. 2015; 27(10): 521-30.
  151. O'Reilly C., Doroudian M., Mawhinney L. et al. Targeting MIF in cancer: therapeutic strategies, current developments, and future opportunities. Med. Res. Rev. 2016; 36(3): 440-60.
  152. Суслов, А.П., Коноплева М.В., Третьяков О.Ю. Фундаментальная иммунобиология провоспалительных цитокинов и MIF. Медицинская иммунология. 2006; 8(1): 5-22. [Suslov A.P., Konopleva M.V., Tretiakov O.Yu. Fundamental immunobiology of pro-inflammatory cytokines and MIF. Med. Immunol. (Russia) 2006; 8(1): 5-22].
  153. Schurigt U., Pfirschke C., Irmler I.M. et al. Interactions of T-helper cells with fibroblast-like synoviocytes: up-regulation of matrix metalloprotein-ases by macrophage migration inhibitory factor from both Th1 and Th2 cells. Arthritis Rheum. 2008; 58(10): 3030-40.
  154. Penticuff J.C., Woolbright B.L., Sielecki T.M. et al. MIF family proteins in genitourinary cancer: tumorigenic roles and therapeutic potential. Nat. Rev. Urol. 2019; 16(5): 318-28.
  155. Candido J., Hagemann T. Cancer-Related Inflammation. Journal of Clinical Immunology 2012; 33(1): 79-84.
  156. Bui J.D., Schreiber R.D. Cancer immunosurveillance, immunoedit-ing and inflammation: independent or interdependent processes? Curr. Opin. Immunol. 2007; 19(2): 203-8.
  157. Braumuller H., Wieder T., Brenner E. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 2013; 494(7437): 361-5.
  158. Valle-Mendiola A., Gutierrez-Hoya A., Lagunas-Cruz M. del C. et al. Pleiotropic effects of IL-2 on cancer: its role in cervical cancer. Mediators Inflamm. 2016; 2016: 2849523. doi: 10.1155/2016/2849523.
  159. Nalbant A. IL-17, IL-21, and IL-22 cytokines of T helper 17 cells in cancer. J. Interferon Cytokine Res. 2019; 39(1): 56-60.
  160. Guery L., Hugues S. Th17 Cell plasticity and functions in cancer Immunity. Biomed Res. Int. 2015; 2015: 314620. doi: 10.1155/2015/314620.
  161. Hurtado C.G., Wan F., Housseau F. et al. Roles for Interleukin 17 and Adaptive Immunity in Pathogenesis of Colorectal Cancer. Gastroenterology 2018; 155(6): 1706-15.
  162. Chen X., Wan J., Liu J. et al. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer 2010; 69: 348-54.
  163. Yamada Y., Saito H., Ikeguchi M. Prevalence and clinical relevance of Th17 cells in patients with gastric cancer. J. Surg. Res. 2012; 178: 685-91.
  164. Punt S., Langenhoff J.M., Putter H. et al. The correlations between IL-17 vs Th17 cells and cancer patient survival: a systematic review. Oncoim-munol.2015; 4: 547-57.
  165. Slingluff C.L., Cox A.L., Stover J.M. et al. Cytotoxic T-lymphocyte response to autologous human squamous cell cancer of the lung: epitope reconstitution with peptides extracted from HLA-Aw68. Cancer Res. 1994; 54: 2731-7.
  166. Boon T., Coulie P.G., Van den Eynde B. Tumor antigens recognized by T cells. Immunol. Today 1997; 18: 267-8.
  167. Garris C.S., Arlauckas S.P., Kohler R.H. et al. Successful Anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-y and IL-12. Immunity 2018; 49(6): 1148-61.
  168. Blackburn S.D., Shin H., Haining W.N. et al. Coregulation of CD8þ T cell exhaustion by multiple inhibitory receptors during chronic viral infec- tion. Nat. Immunol. 2009; 10: 29-37
  169. Fourcade J., Sun Z., Benallaoua M. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigenspecific CD8þ T cell dysfunction in melanoma patients. J. Exp. Med. 2010; 207(10): 2175-86.
  170. Woo S.R., Turnis M.E., Goldberg M.V. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012; 72(4): 917-27.
  171. Johnston R.J., Comps-Agrar L., Hackney J. et al. The immunore-ceptor TIGIT regulates antitumor and antiviral CD8(þ) T cell effector function. Cancer Cell 2014; 26(6): 923-37.
  172. Chauvin J.M., Pagliano O., Fourcade J., et al. TIGIT and PD-1 impair tumor antigen-specific CD8(þ) T cells in melanoma patients. J. Clin. Invest. 2015; 125(5): 2046-58.
  173. Damo M., Joshi N.S. Treg cell IL-10 and IL-35 exhaust CD8+ T cells in tumors. Nat. Immunol. 2019; 20(6): 674-5.
  174. Aluvihare V.R., Kallikourdis M., Betz A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 2004; 5(3): 266-71.
  175. Robertson S.A., Care A.S., Moldenhauer L.M. Regulatory T cells in embryo implantation and the immune response to pregnancy. J. Clin. Invest. 2018; 128(10): 4224-35.
  176. Du M.R., Guo P.F., Piao H.L. et al. Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal-fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J. Immunol. 2014; 192(4): 1502-11.
  177. Schumacher A., Zenclussen A.C. The Paternal Contribution to Fetal Tolerance. Adv. Exp. Med. Biol. 2015; 868: 211-25.
  178. Ohue Y., Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019; 110(7): 2080-9.
  179. Schiaffino S., Pereira M.G., Ciciliot S. et al. Regulatory T cells and skeletal muscle regeneration. FEBS J. 2017; 284(4): 517-24.
  180. Mathur A.N., Zirak B., Boothby I.C. et al. Treg-cell control of a CXCL5-IL-17 inflammatory axis promotes hair-follicle-stem-cell differentiation during skin-barrier repair. Immunity. 2019; 50(3): 655-67.
  181. Ali N., Rosenblum M.D. Regulatory T cells in skin. Immunology 2017; 152(3): 372-81.
  182. Li J., Tan J., Martino M.M. et al. Regulatory T-Cells: potential regulator of tissue repair and regeneration. Front. Immunol. 2018; 9: 585-96.
  183. Morikawa M., Derynck R., Miyazono K. TGF-p and the TGF-p family: context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol. 2016; 8(5): a021873. doi: 10.1101/cshperspect.a021873.
  184. Meng J., Liu Y., Guan S. et al. The establishment of immune infiltration based novel recurrence predicting nomogram in prostate cancer. Cancer Med. 2019; 8(11): 5202-13.
  185. Moreno Ayala M.A., Li Z., DuPage M. Treg programming and therapeutic reprogramming in cancer. Immunology 2019; 157(3): 198-209.
  186. Gianchecchi E., Fierabracci A. Inhibitory receptors and pathways of lymphocytes: the role of PD-1 in Treg development and their involvement in autoimmunity onset and cancer progression. Front. Immunol. 2018; 9: 2374-86.
  187. Tosolini M., Kirilovsky A., Mlecnik B. et al. Clinical impact of different classes of infiltrating T. cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011; 71(4): 1263-71.
  188. Тишевская Н.В., Бабаева А.Г., Геворкян Н.М. Роль лимфоцитарных РНК в межклеточном информационном обмене и регуляции регенеративных процессов. Российский физиологический журнал им. И.М. Сеченова. 2016; 102(11): 1280-1301.
  189. Ekiz H.A., Ramstead A.G., Lee S.H. et al. T. cell-expressed microRNA-155 reduces lifespan in a mouse model of age-related chronic inflammation. J. Immunol. 2020; 204(8): 2064-75.
  190. Ali S.A., Abdulrahman Z.F.A., Faraidun H.N. Circulatory miRNA- 155, miRNA-21 target PTEN expression and activity as a factor in breast cancer development. Cell. Mol. Biol. (Noisy-legrand). 2020; 66(7): 44-50.
  191. Brahmer J.R., Tykodi S.S., Chow L.Q. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012; 366(26): 2455-65.
  192. Li B., Chan H.L., Chen P. Immune checkpoint inhibitors: basics and challenges. Curr. Med. Chem. 2019; 26(17): 3009-25.
  193. Сахин В.Т., Григорьев М.А., Е.В. Крюков и др. Патогенетические особенности развития анемии хронических заболеваний у больных со злокачественными новообразованиями и ревматической патологией. Онкогематология 2020; 15(4): 82-90.
  194. Champiat S., Dercle L., Ammari S. et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/ PD-L1. Clin. Cancer Res. 2017; 23(8): 1920-8.
  195. Yao H., Wang H., Li C. et al. Cancer cell-intrinsic PD-1 and implications in combinatorial immunotherapy. Front. Immunol. 2018; 9: 1774-81.
  196. Kamada T., Togashi Y., Tay C. et al. PD-1 + regulatory T. cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl. Acad. Sci. USA. 2019; 116(20): 9999-10008.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies