Novel plasmid constructs with angiogenic growth factors genes - human VEGF, HGF and angiopoietin-1 for therapeutic angiogenesis



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Efficacy of critical limb ischemia gene therapy can be improved by application of novel plasmid vectors with higher transgene expression. The goal of this study is to evaluate in vitro and in vivo expression of angiogenic growth factors after gene transfer using a novel plasmid vector PC4W.
Plasmid constructs with genes of human VEGF185 CpC4W-hHGFopt), HGF CpC4W-hHGFopt) and angiopoietin-1 (pC4W-hAng-1optJ were tested in vitro in a HEK293T cell culture. Cells were subjected to calcium-phosphate transfection and conditioning medium samples were assayed for transgene levels using Western blot and ELISA. Results were compared with commercially available pcDNA3 based vectors encoding the same growth factors. Reverse transcription PCR was used to assay transgene expression in BALB-c mice ischemic muscle.
ELISA and Western blotting data suggest that PC4W based constructs give a higher protein output of about 2-2,5 fold compared with pcDNA3 based plasmids. Optimization of nucleotide sequence in growth factors cDNA results in additional increase in transgene expression. RT-PCR data shows that expression of human HGF persists in murine ischemic skeletal muscle up to 14 days after gene transfer.
Our results indicate that novel plasmid constructs for angiogenic growth factors expression have a good efficacy in vitro and in vivo and can be used for VEGF1B5, HGF and angiopoietin-1 expression in human cell culture and in experimental animals' tissue. At the moment all developed constructs pass through a series of experiments in animal ischemia models and will be used for combined gene therapy development.

About the authors

P I Makarevich

Faculty of Basic medicine, Lomonosov Moscow State University, Moscow

Faculty of Basic medicine, Lomonosov Moscow State University, Moscow

A Ya Shevelev3

LLC «MONA», Moscow

LLC «MONA», Moscow

I N Rybalkin

LLC «MONA», Moscow

LLC «MONA», Moscow

N M Kashirina

LLC «MONA», Moscow

LLC «MONA», Moscow

L N Lipatova

LLC «MONA», Moscow

LLC «MONA», Moscow

Z I Tsokolaeva

Institute of experimental cardiology, Russian cardiology research center, Moscow

Institute of experimental cardiology, Russian cardiology research center, Moscow

E K Shevchenko

Institute of experimental cardiology, Russian cardiology research center, Moscow

Institute of experimental cardiology, Russian cardiology research center, Moscow

I B Beloglazova

Institute of experimental cardiology, Russian cardiology research center, Moscow

Institute of experimental cardiology, Russian cardiology research center, Moscow

M A Boldyreva

Institute of experimental cardiology, Russian cardiology research center, Moscow

Institute of experimental cardiology, Russian cardiology research center, Moscow

К A Rubina

LLC «Gene and Cell therapy», Moscow

LLC «Gene and Cell therapy», Moscow

T N Vlasik

LLC «MONA», Moscow

LLC «MONA», Moscow

Ye V Parfyonova

Institute of experimental cardiology, Russian cardiology research center, Moscow

Institute of experimental cardiology, Russian cardiology research center, Moscow

References

  1. Second european consensus document on chronic critical leg ischemia. Circulation 1ЭЭ1; 84(4 Suppl): IV1-26.
  2. Dormandy J., Heeck L, Vig S. Predicting which patients will develop chronic critical leg ischemia. Semin. Vase. Surg. 1999; 12(2): 138-41.
  3. Sprengers R.W., Lips D.J., Moll F.L., Verhaar M.C. Progenitor cell therapy in patients with critical limb ischemia without surgical options. Ann. Surg. 2008; 247(3): 411-20.
  4. Faries P.L., Teodorescu V.J., Morrissey N.J. et al. The role of surgical revascularization in the management of diabetic foot wounds. Am J. Surg. 2004; 187C5A): 34S-7S.
  5. Lepantalo M., Biancari F., Tukiainen E. Never amputate without consultation of a vascular surgeon. Diabetes Metab. Res. Rev. 2000; 16 Suppl 1: S27-32.
  6. Morishita R. Recent progress in gene therapy for cardiovascular disease. Circ. J. 2002; 66(12): 1077-86.
  7. Morishita R. Perspective in progress of cardiovascular gene therapy. J. Pharmacol. Sci. 2004; 95(11: 1-8.
  8. Parfyonova Y.V., Plekhanova O.S., Tkachuk V.A. Plasminogen activators in vascular remodeling and angiogenesis. Biochemistry (Mosc.l, 2002; 67(1): 119-34.
  9. Gupta R., Tongers J., Losordo D.W. Human studies of angiogenic gene therapy. Circ. Res. 2009; 105(81: 724-36.
  10. Wolff J.A., Budker V. The mechanism of naked DNA uptake and expression. Adv. Genet. 2005; 54: 3-20.
  11. Conwell C.C., Huang L. Recent advances in non-viral gene delivery. Adv. Genet. 2005; 53: 1-18.
  12. Van Belle E., Witzenbichler В., Chen D. et al. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: The case for paracrine amplification of angiogenesis. Circulation 1998; 97(4): 381-90.
  13. Morishita R., Aoki M., Hashiya N. et al. Therapeutic angiogenesis using hepatocyte growth factor (hgfl. Curr. Gene Ther. 2004; 4(2): 199-206.
  14. Traktuev D.O., Tsokolaeva Z.I., Shevelev A.Y. et al. Urokinase gene transfer augments angiogenesis in ischemic skeletal and myocardial muscle. Mol. Ther. 2007; 15(11): 1939-46.
  15. Шевелев А.Я.; Экспрессионный вектор для синтеза белков в клетках млекопитающих. Патент на изобретение RU 2364627 С2.
  16. van Ooyen A., van den Berg J., Mantei N., Weissmann С Comparison of total sequence of a cloned rabbit beta-globin gene and its flanking regions with a homologous mouse sequence. Science 1979; 206(4416): 337-44.
  17. Zufferey R., Donello J.E., Trono D., Hope T.J. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 1999; 73(4): 2886-92.
  18. Шевелев А.Я., Каширина H.M. Ген VEGFopt фактора роста эндотелия сосудов человека. Заявка на изобретение RU2008125416.
  19. Шевелев А.Я., Павлов Ч.С., Каширина Н.М. Ген HGFopt фактора роста гепатоцитов. Заявка на изобретение RU2008125409.
  20. Шевелев А.Я., Каширина Н.М. Ген AGPopt ангиопоэтина-1. Заявка на изобретение RU2008125411.
  21. Barreau С, Paillard L, Osborne Н.В. Au-rich elements and associated factors: Are there unifying principles? Nucleic Acids Res. 2005; 33(22): 7138-50.
  22. Takeshita S., Isshiki Т., Ochiai M. et al. Endothelium-dependent relaxation of collateral microvessels after intramuscular gene transfer of vascular endothelial growth factor in a rat model of hindlimb ischemia. Circulation 1998; 98(131: 1261-3.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2010 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies