Modern approaches to peripheral nerve regeneration after injury: the prospects of gene and cell therapy



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Natural potency of peripheral nerves to regenerate after injury is limited by time and ability of neurons to recuperate. It results in loss of function and disability of impaired subject. Existing therapeutic approaches are not capable to support nerve survival and neurite outgrowth for a sufficient period of time. This problem can be solved by application of novel gene therapeutic drugs and cell-based approaches. Present review focuses on mechanisms of nerve repair and key stages of peripheral nerve system regeneration after injury. The study provides a systematic overview of biologically active molecules involved and gives a prospect of new methods in treatment of injured nerves.

Full Text

Restricted Access

About the authors

M. N Karagyaur

Lomonosov Moscow State University; Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex

Moscow, Russia

P. I Makarevich

Lomonosov Moscow State University; Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex

Moscow, Russia

E. K Shevchenko

Lomonosov Moscow State University; Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex

Moscow, Russia

D. V Stambolsky

Lomonosov Moscow State University; Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex

Moscow, Russia

N. I Kalinina

Lomonosov Moscow State University

Moscow, Russia

Ye. V Parfyonova

Lomonosov Moscow State University; Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex

Moscow, Russia

References

  1. Одинак М.Ж., Живолупов С.А. Заболевания и травмы периферической нервной системы. Санкт-Петербург: СпецЛит; 2009.
  2. Шевелев И.Н. Травматические поражения плечевого сплетения. Москва: Издательство «ИП Андреева Т.М.»; 2005.
  3. Goldberg J.L. How does an axon grow? Genes & Development 2003; 17(8): 941-58.
  4. Hoke A., Redett R., Hameed H. et al. Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J. Neurosci. 2006; 26(38): 9646-55.
  5. Simons M., Trajkovic K. Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis. J. Cell Sci. 2006; 119(Pt 21): 4381-9.
  6. Sanes J.R., Lichtman J.W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 1999; 22: 389-442.
  7. Гомазков О.А. Нейротрофическая регуляция и стволовые клетки мозга. Москва: Икар; 2006.
  8. Boyd J.G., Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol. Neurobiol. 2003; 27(3): 277-323.
  9. Dono R. Fibroblast growth factors as regulators of central nervous system development and function. Amer. J. Physiol.-Regulat. Integ. Compar.Physiol. 2003; 284(4): R867-81.
  10. Bottcher R.T., Niehrs C. Fibroblast growth factor signaling during early vertebrate development. Endocr. Rev. 2005; 26(1): 63-77.
  11. Hobson M.I., Green C.J., Terenghi G. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J. Anat. 2000; 197 (Pt 4): 591-605.
  12. Storkebaum E., Carmeliet P. VEGF: a critical player in neurodegeneration. J. Clin. Invest. 2004; 113(1): 14-8.
  13. Zachary I. Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 2005; 14(5): 207-21.
  14. Bagnard D., Vaillant C., Khuth S.T. et al. Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J. Neurosci. 2001; 21(10): 3332-41.
  15. Russo V.C., Gluckman P.D., Feldman E.L. et al. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr. Rev. 2005; 26(7): 916-43.
  16. Bazley L.A., Gullick W.J. The epidermal growth factor receptor family. Endocr. Relat. Cancer 2005; 12 Suppl 1: S17-27.
  17. Chantry A., Gregson N., Glynn P. Degradation of myelin basic protein by a membrane-associated metalloprotease: neural distribution of the enzyme. Neurochem. Res. 1992; 17(9): 861-7. стать наиболее эффективной вспомогательной технологией, дополняющей хирургические методы восстановления целостности нерва. При этом на самых ранних сроках после травмы целесообразно применение рекомбинантных трофических факторов, содержащих их клеточных продуктов (кондиционированная среда, микровезикулы, экзосомы и т.п.) либо продуцирующих их клеток. Это позволит оперативно воспрепятствовать гибели большого числа поврежденных нейронов и шванновских клеток, а также предотвратит обширное повреждение тканей. В случае необходимости поддержания регенерации нерва в течение продолжительного времени обязательным компонентом терапии становятся плазмидные или вирусные векторы, кодирующие нейротрофические и другие факторы роста. Несомненно, для широкого применения данного подхода в клинических испытаниях и практике требуется систематизировать имеющиеся данные доклинических исследований, разработать оптимальные сроки и объем такой терапии вместе с решением вопросов безопасности, связанных как с применением вирусных векторов, так и с обеспечением и контролем стабильности клеточных материалов. Благодарности Исследование выполнено за счет гранта Российского научного фонда (проект №16-45-03007).
  18. Siconolfi L.B., Seeds N.W. Induction of the plasminogen activator system accompanies peripheral nerve regeneration after sciatic nerve crush. J. Neurosci. 2001; 21(12): 4336-47.
  19. Pittman R.I., Ivins J.K., Buettner H.M. Neuronal plasminogen activators: cell surface binding sites and involvement in neurite outgrowth. J. Neurosci. 1989; 9(12): 4269-86.
  20. D'Alessio S.B., Blasi F. The urokinase receptor as an entertainer of signal transduction. Bioscience 2009; 14: 4575-87.
  21. McGarvey M.L., Baron-Van Evercooren A., Kleinman H.K. et al. Synthesis and effects of basement membrane components in cultured rat Schwann cells. Dev. Biol. 1984; 105(1): 18-28.
  22. Letourneau P. Axonal Pathfinding: Extracellular Matrix Role. In: Squire L.R., editor. Encyclopedia of Neuroscience. V. 1. Oxford: Academic Press; 2009. p. 1139-45.
  23. Snow D.M., Lemmon V., Carrino D.A. et al. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp. Neurol. 1990; 109(1): 111-30.
  24. Katoh-Semba R., Matsuda M., Kato K. et al. Chondroitin sulphate proteoglycans in the rat brain: candidates for axon barriers of sensory neurons and the possible modification by laminin of their actions. Eur. J. Neurosci. 1995; 7(4): 613-21.
  25. Reddi D., Curran N. Chronic pain after surgery: pathophysiology, risk factors and prevention. Postgrad. Med. J. 2014; 90(1062): 222-7.
  26. Hems T.E. Timing of surgical reconstruction for closed traumatic injury to the supraclavicular brachial plexus. J. Hand Surg. Eur. Vol. 2015; 40(6): 568-72.
  27. Konofaos P., Ver Halen J.P. Nerve repair by means of tubulization: past, present, future. J. Reconstr. Microsurg. 2013; 29(3): 149-64.
  28. Terenghi G. Peripheral nerve regeneration and neurotrophic factors. J. Anat. 1999; 194: 1-14.
  29. Klimaschewski L., Hausott B., Angelov D.N. The pros and cons of growth factors and cytokines in peripheral axon regeneration. Int. Rev. Neurobiol. 2013; 108: 137-71.
  30. Kimpinski K., Mearow K. Neurite growth promotion by nerve growth factor and insulin-like growth factor-1 in cultured adult sensory neurons: role of phosphoinositide 3-kinase and mitogen activated protein kinase. J. Neurosci. Res. 2001; 63(6): 486-99.
  31. Edstrom A., Ekstrom P.A. Role of phosphatidylinositol 3-kinase in neuronal survival and axonal outgrowth of adult mouse dorsal root ganglia explants. J. Neurosci. Res. 2003; 74(5): 726-35.
  32. Mason M.R., Tannemaat M.R., Malessy M.J. et al. Gene therapy for the peripheral nervous system: a strategy to repair the injured nerve? Curr. Gene Ther. 2011; 11(2): 75-89.
  33. Карагяур М.Н. Влияние мезенхимальных стволовых клеток на восстановление периферического нерва после травмы [диссертация]. Москва [РФ]: НИИЭК ФГБУ РКНПК МЗ РФ; 2013.
  34. Tannemaat M.R., Verhaagen J., Malessy M. The application of viral vectors to enhance regeneration after peripheral nerve repair. Neurol. Res. 2008; 30(10): 1039-46.
  35. Chattopadhyay M., Walter C., Mata M. et al. Neuroprotective effect of herpes simplex virus-mediated gene transfer of erythropoietin in hyperglycemic dorsal root ganglion neurons. Brain 2009; 132(Pt 4): 879-88.
  36. Chen Y., Wang D., Wang Z. et al. Effect of adenovirus expressing NGF on sciatic nerve injury in rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2009; 23(8): 947-53.
  37. Martin K.R., Quigley H.A., Zack D.J. et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest. Ophthalmol. Vis. Sci. 2003; 44(10): 4357-65.
  38. Powell R.J., Goodney P., Mendelsohn F.O. et al. Safety and efficacy of patient specific intramuscular injection of HGF plasmid gene therapy on limb perfusion and wound healing in patients with ischemic lower extremity ulceration: results of the HGF-0205 trial. J. Vasc. Surg. 2010; 52(6): 1525-30.
  39. Kibbe M.R., Hirsch A.T., Mendelsohn F.O. et al. Safety and efficacy of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with critical limb ischemia. Gene Ther. 2016; 23(4): 306-12.
  40. Челышев Ю.А., Мухамедшина Я.О., Шаймарданова Г.Ф. и соавт. Прямая доставка терапевтических генов для стимулирования посттравматической нейрорегенерации. Неврологический вестник 2012; XLIV(1): 76-83.
  41. Масгутов Р.Ф., Салафутдинов И.И., Богов А.А. (мл.) и др. Стимуляция посттравматической регенерации седалищного нерва крысы с помощью плазмиды, экспрессирующей сосудистый эндотелиальный фактор роста и основной фактор роста фибробластов. Клеточная трансплантология и тканевая инженерия 2011; VI(3): 67-70.
  42. Ge J., Li Y., Zhuo Y. et al. Peripheral nerve and transgene cells transplantation in the treatment of experimental neuropathy of SD rats. Yan Ke Xue Bao 1998; 14(3): 121-5.
  43. Karagyaur M., Dyikanov D., Makarevich P. et al. Non-viral transfer of BDNF and uPA stimulates peripheral nerve regeneration. Biomed. Pharmacother. 2015; 74: 63-70.
  44. Pereira Lopes F.R., Martin P.K., Frattini F. et al. Double gene therapy with granulocyte colony-stimulating factor and vascular endothelial growth factor acts synergistically to improve nerve regeneration and functional outcome after sciatic nerve injury in mice. Neuroscience 2013; 230: 184-97.
  45. Gupta R., Tongers J., Losordo D.W. Human studies of angiogenic gene therapy. Circ. Res. 2009; 105(8): 724-36.
  46. Makarevich P.I., Rubina K.A., Diykanov D.T. et al. Therapeutic angiogenesis using growth factors: current state and prospects for development. kardiologiia 2015; 55(9): 59-71.
  47. Fairbairn N.G., Meppelink A.M., Ng-Glazier J. et al. Augmenting peripheral nerve regeneration using stem cells: a review of current opinion. World J. Stem Cells 2015; 7(1): 11-26.
  48. Kalinina N., Kharlampieva D., Loguinova M. et al. Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Res. Ther. 2015; 6: 221-32.
  49. Makridakis M., Roubelakis M.G., Vlahou A. Stem cells: insights into the secretome. Biochim. Biophys. Acta 2013; 1834(11): 2380-4.
  50. Lopatina T., Kalinina N., Karagyaur M. et al. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 2011; 6(3): e17899.
  51. Shevchenko E.K., Makarevich P.I., Tsokolaeva Z.I. et al. Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. J. Transl. Med. 2013; 11: 138-52.
  52. Serini G., Bussolino F. Common cues in vascular and axon guidance. Physiology (Bethesda) 2004; 19: 348-54.
  53. Amer M.H., White L.J., Shakesheff K.M. The effect of injection using narrow-bore needles on mammalian cells: administration and formulation considerations for cell therapies. J. Pharm. Pharmacol. 2015; 67(5): 640-50.
  54. Fang Y., Mo X., Guo W. et al. A new type of Schwann cell graft transplantation to promote optic nerve regeneration in adult rats. J. Tissue Eng. Regen. Med. 2010; 4(8): 581-9.
  55. Song M., Chen S.Z., Han H. et al. An experimental study on repair of peripheral nerve injury by transplantation of microcapsulated NGF-expressing NIH 3T3 cells. Zhonghua Zheng Xing Wai Ke Za Zhi 2005; 21(1): 53-7.
  56. Yamato M., Kikuchi A., Kohsaka S. et al. Novel manipulation technology of cell sheets for tissue engineering. In: Ikada Y., Okano T., editors. Proceedings of the 3rd International Symposium on Tissue Engineering for Therapeutic Use. Tissue Engineering for Therapeutic Use 3; 1998 Sep 4-8; Kyoto, Japan. Amsterdam: Elsevier; 1999. p. 99.
  57. Matsuura K., Utoh R., Nagase K. et al. Cell sheet approach for tissue engineering and regenerative medicine. J. Control Release 2014; 190: 228-39.
  58. Elloumi-Hannachi I., Yamato M., Okano T. Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J. Intern. Med. 2010; 267(1): 54-70.
  59. Makarevich P.I., Boldyreva M.A., Gluhanyuk E.V. et al. Enhanced angiogenesis in ischemic skeletal muscle after transplantation of cell sheets from baculovirus-transduced adipose-derived stromal cells expressing VEGF165. Stem Cell Res. Ther. 2015; 6: 204-14.
  60. Makarevich P., Boldyreva M., Dergilev K. et al. Transplantation of cell sheets from adipose-derived mesenchymal stromal cells effectively induces angiogenesis in ischemic skeletal muscle. Genes and Cells 2015; Х(3): 68-77.
  61. Makarevich P.I., Dergilev K.V., Tsokolaeva Z.I. et al. Delivery of genetically engineered adipose-derived cell sheets for treatment of ischemic disorders-development of application in animal models. Mol. Ther. 2015; 23(1): 262.
  62. Дергилев К.В., Макаревич П.И., Меньшиков М.Ю. и др. Тканеинженерные конструкции на основе пластов клеток для регенеративной медицины. Гены и клетки 2016; XI(3): 23-32.
  63. Pesirikan N., Chang W., Zhang X. et al. Characterization of schwann cells in self-assembled sheets from thermoresponsive substrates. Tissue Eng. Part A 2013; 19(13-14): 1601-9.
  64. Georgiou M., Bunting S.C., Davies H.A. et al. Engineered neural tissue for peripheral nerve repair. Biomaterials 2013; 34(30): 7335-43.
  65. Junka R., Yu X. Novel acellular scaffold made from decellularized schwann cell sheets for peripheral nerve regeneration. Reg. Engin. Transl. Med. 2015; 1(1): 22-31.
  66. Gao M., Lu P., Lynam D. et al. BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration. J. Neural. Eng. 2016; 13(6): 066011.
  67. Shevchenko E., Makarevich P., Tsokolaeva Z. et al. Restoration of blood flow in ischemic mouse hind limb after administration of plasmid constructions and genetically modified adipose-derived stromal cells. Mol. Med. 2011; 4: 23-8.
  68. Нимирицкий П.П., Дусь Т.А., Григорьева О.А. и др. Клеточные пласты из мезенхимных стромальных клеток жировой ткани человека и получение препаратов внеклеточного матрикса методом децел-люляризации. Технологии живых систем 2016; 13(6): 4-13.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies