Application of tissue engineered constructs on the basis of cell sheets FOR RESTORATION OF TISSUES AND ORGANS



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Cell sheet technology has certain advantages over conventionally used injections as far as it facilitates cell survival and integration after delivery of cells to intended organ/tissue. It also allows to successfully replace lost or irreversibly damaged tissues with restoration of its functions including endo/paracrine activity. Application of cell sheets has gone beyond bench work and now is under clinical translation where it is successfully used for repair of cornea, cartilage, periodontal tissue, esophageal mucosa, pancreas and thyroid gland. Further advances of cell sheet technologies allow to construct pre-vascularized tissue grafts which effects are not limited to tissue repair, but also allows to restore its function via paracrine action of transplanted cells and to ensure long-lasting therapeutic effects. Genetic modification of cells used for cell sheet construction allows to utilize this technology to treat hereditary disorders, deficit of enzymes or other secreted proteins. This review focuses on recent results of therapeutic implication of cell sheets and prospects of this field which gained much attention in regenerative medicine.

Full Text

Restricted Access

About the authors

K. V Dergilev

Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex

Moscow, Russia

P. I Makarevich

Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex

Moscow, Russia

M. Yu Menshikov

Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex

Moscow, Russia

E. V Parfyonova

Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex

Moscow, Russia

References

  1. Hamdi H.,Furuta A.,Bellamy V. et al. Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann. Thorac. Surg. 2009; 87(4): 1196-203.
  2. Nagai N., Yunoki S.,Satoh Y. et al. A method of cell-sheet preparation using collagenase digestion of salmon atelocollagen fibrillar gel. J. Biosci. Bioeng. 2004; 98(6): 493-6.
  3. Yeh T.S., Fang Y.H., Lu C.H. et al. Baculovirus-transduced, VEGF-expressing adipose-derived stem cell sheet for the treatment of myocardium infarction. Biomaterials 2014; 35(1): 174-84.
  4. Makarevich P.I., Dergilev K.V., Tsokolaeva Z.I. et al. Delivery of genetically engineered adipose-derived cell sheets for treatment of ischemic disorders - development of application in animal models. In: American Society of Gene & Cell Therapy (ASGCT) 18th Annual Meeting. Proceedings of the 18th Annual Meeting of American Society of Gene & Cell Therapy (ASGCT); 2015 May 13-16; New Orlean, USA. MolecularTherapy 2015; 23 Suppl 1. p. S262
  5. Alrefai M.T., Murali D., Paul A. et al. Cardiac tissue engineering and regeneration using cell-based therapy. StemCellsCloning 2015; 8: 81-101.
  6. Masumoto H., Ikuno T.,Takeda M. et al. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci. Rep. 2014; 4: 6716.
  7. Kamata S., Miyagawa S.,Fukushima S. et al. Improvement of cardiac stem cell sheet therapy for chronic ischemic injury by adding endothelial progenitor cell transplantation: analysis of layer-specific regional cardiac function. Cell Transplant. 2014; 23(10): 1305-19.
  8. Kamata S., Miyagawa S.,Fukushima S et al. Targeted delivery of adipocytokines into the heart by induced adipocyte cell-sheet transplantation yields Immune tolerance and functional recovery in autoimmune-associated myocarditis in Rats. Circ. J. 2015; 79(1): 169-79.
  9. Yamamoto Y., Ito A., Kato M. et al. Preparation of artificial skeletal muscle tissues by amagneticforce-based tissue engineering technique. J. Biosci. Bioeng. 2009; 108(6): 538-43.
  10. Yu M.L.,Yu M.F.,Zhu L.Q. et al. The Effects ofTiO2Nanodot Films with RGD Immobilization on Light-Induced Cell SheetTechnology. Biomed. Res. Int.2015; 2015: 582359.
  11. Guillaume-Gentil O., Semenov O.V., Zisch A.H. et al.pH-controlled recovery of placenta-derived mesenchymal stem cell sheets. Biomaterials2011; 32(19): 4376-84.
  12. ZahnR.,Thomasson E.,Guillaume-Gentil O. et al. Ion-induced cell sheetdetachment from standardcellculture surfaces coated with polyelectrolytes. Biomaterials2012; 33(12): 3421-27.
  13. NakayamaY.,Furumoto A.,Kidoaki S. et al. Photocontrol ofcelladhesion and proliferation by a photoinduced cationic polymer surface. Photochem. Photobiol.2003; 77(5): 480-86.
  14. Dergilev K.V., Tsokolaeva Z.I., Makarevich P.I. et al. Tissueengineering cell sheets based on stem cells for cell cardiomyoplasty. In: international congress «The latest methods of cell technologies in medicine». Proceedings of the international congress «The latest methods of cell technologies in medicine». 2014 Sep 5-6; Novosibirsk, Russia: Poster book 2014; 1. p. 66-7.
  15. MakarevichP.I., ShevchenkoE.K., EfimenkoA.Yu. et.al. Baculovirus-mediated modification of rodent and human adipose-derived stromal cells for cell sheet construction and VEGF165 therapeutic delivery. In: American Society of Gene & Cell Therapy (ASGCT) 18th Annual Meeting. Proceedings of the 17th Annual Meeting of American Society of Gene & Cell Therapy (ASGCT); 2014 May 21-24; Washington, USA: Molecular Therapy 2014; 22 Suppl 1. p. S188.
  16. Akiyama H.,Ito A.,Kawabe Y. et al. Genetically engineered angiogenic cell sheets using magnetic force-based gene delivery and tissue fabrication techniques. Biomaterials 2010; 31(6): 1251-9.
  17. Itabashi Y., Miyoshi S., Kawaguchi H. et al. A new method for manufacturing cardiac cell sheets using fibrin-coated dishes and its electrophysiological studies by optical mapping. Artif. Organs2005; 29(2): 95-103.
  18. Liu J., Hu Q., Wang Z. et al. Autologous stem cell transplantation for myocardial repair. Am. J. Physiol. Heart Circ. Physiol. 2004; 12(1): 501-11.
  19. Xiong Q., Ye L., Zhang P. et al. Bioenergetic and functional consequences of cellular therapy: activation of endogenous cardiovascular progenitor cells. Circ. Res. 2012; 111: 455-68.
  20. Kikuchi A., Okuhara M., Karikusa F. et al. Two dimensional manipulation of confluently cultured vascular endothelial cells using temperature-responsive poly(N-isopropylacrylamide)-grafted surfaces. J. Biomater. Sci. Polym. Ed. 1998; 9: 1331-48.
  21. Okano T., Yamada N., Sakai H. et al. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly (Nisopropylacrylamide). J. Biomed. Mater. Res. 1993; 27: 1243-51.
  22. Shimizu T., Yamato M.,Isoi Y. et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res.2002; 90(3): e40.
  23. Fisher S.A., Doree C., Mathur A. et al. Meta-analysisofcelltherapy trials for patients withheartfailure.Circ. Res. 2015; 116(8): 1361-77.
  24. Kovacic J.C.,Fuster V. Celltherapy for patients with acute myocardial infarction: ACCRUEd evidence to date. Circ. Res.2015; 116(8): 1287-90.
  25. Komae H., Sekine H., Dobashi I. et al. Three-dimensional functional human myocardial tissues fabricated from induced pluripotent stemcells. J. Tissue Eng. Regen. Med. 2015; 18: 521-37.
  26. Alshammary S., Fukushima S., Miyagawa S. Impact of cardiac stem cell sheet transplantation on myocardial infarction. Surg. Today2013; 970-6.
  27. Uchinaka A., Kawaguchi N., Hamada Y. et al. Transplantation of myoblast sheets that secrete the novel peptide SVVYGLR improves cardiac function in failing hearts. Cardiovasc. Res. 2013; 99(1): 102-10.
  28. Hamdi H.,Boitard S.E.,Planat-Benard V. et al. Efficacy of epicardially delivered adipose stroma cell sheets in dilated cardiomyopathy. Cardiovasc. Res. 2013; 99(4): 640-7.
  29. Shimizu T., Yamato M.,Akutsu T.et al. Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J. Biomed. Mater. Res. 2002; 60(1): 110-7.
  30. Kubo H., Shimizu T.,Yamato M. et al. Creation of myocardial tubes using cardiomyocyte sheets and an in vitro cell sheet-wrapping device. Biomaterials 2007; 28(24): 3508-16.
  31. Shimizu T., Sekine H.,Isoi Y.et al., Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 2006; 12(3): 499-507.
  32. Furuta A.,Miyoshi S.,Itabashi Y. et al. Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ. Res. 2006; 98(5): 705-12.
  33. Sekine H., Shimizu T.,Kosaka S. et al. Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J. Hear. Lung Transplant. 2006; 25(3): 324-32.
  34. Takahashi K.,YamanakaS. Induction ofpluripotentstem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell2006; 126(4): 663-76.
  35. Matsuura K., Wada M.,Shimizu T.et al. Creation of human cardiac cell sheets using pluripotent stem cells. Biochem. Biophys. Res. Commun. 2012; 425(2): 321-7.
  36. Masumoto H., Matsuo T.,Yamamizu K. et al. Pluripotent stem cell-engineered cell sheets reassembled with defined cardiovascular populations ameliorate reduction in infarct heart function through cardiomyocyte-mediated neovascularization. Stem Cells 2012; 30(6): 1196-205.
  37. Ishida O.,Hagino I.,Nagaya N. et al. Adipose-derived stem cell sheet transplantation therapy in a porcine model of chronic heart failure. Transl. Res. Transl. Res.2015; 165(5): 631-9.
  38. Makarevich P., Tsokolaeva Z., Shevelev A. et al. Combined transfer of human VEGF165 and HGF genes renders potent angiogenic effect in ischemic skeletal muscle. PLoS One 2012; 7(6): e38776.
  39. Beltrami A.P.,Barlucchi L.,Torella D. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114(6): 763-76.
  40. DawnB., Bolli R. Cardiacprogenitor cells: the revolution continues. Circ. Res. 2005; 97(11): 1080-2.
  41. Bearzi C.,Rota M.,Hosoda T. et al. Human cardiac stem cells. PNAS USA 2007; 104(35): 14068-73.
  42. Anversa P., Leri A. Innate regeneration in the aging heart: Healing from within. Mayo Clin. Proc. 2013; 88(8): 871-83.
  43. Matsuura K., Honda A.,Nagai T. et al. Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J. Clin. Invest. 2009; 119(8): 2204-17.
  44. Narita T., Shintani Y., Ikebe C. et al. The use of scaffold-free cell sheet technique to refine mesenchymal stromal cell-based therapy for heart failure. Mol.Ther. 2013; 21(4): 860-7.
  45. Bel A.,Planat-Bernard V.,Saito A. et al. Composite cell sheets: A further step toward safe and effective myocardial regeneration by cardiac progenitors derived from embryonic stem cells. Circulation 2010; 122(11): 118-23.
  46. Zakharova L., Mastroeni D.,Mutlu N. et al. Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovasc. Res.2010; 87(1): 40-9.
  47. Shudo Y., Miyagawa S.,Ohkura H. et al. Addition of mesenchymal stem cells enhances the therapeutic effects of skeletal myoblast cell-sheet transplantation in a rat ischemic cardiomyopathy model. Tissue Eng. Part A 2014; 20(3-4): 728-39.
  48. Wu S.M., Zhang W.X., Wang M.H. et al. Proteomic analysis of the immunosuppressive effects of mesenchymal stem cells in a rat hearttransplantation model. Adv. Clin. Exp. Med. 2013; 22(6): 785-94.
  49. Tao L., Wang Y., Gao E. et al. Adiponectin: an indispensable molecule in rosiglitazone cardioprotection following myocardial infarction.Circ. Res. 2010; 106(2): 409-17.
  50. Ghantous C.M., Azrak Z.,Hanache S. et al. Differential Role of Leptin and Adiponectin in Cardiovascular System.Int. J.Endocrinol. 2015: 534320.
  51. Imanishi Y.,Miyagawa S.,Maeda N. et al. Induced adipocyte cell-sheet ameliorates cardiac dysfunction in a mouse myocardial infarction model: A novel drug delivery system for heart failure. Circulation 2011; 124 Suppl 11: 10-7.
  52. Hammar E.,Parnaud G.,Bosco D. et al. Extracellular matrix protects pancreatic p-cells against apoptosis: Role of short- and longterm signaling pathways. Diabetes 2004; 53(8): 2034-41.
  53. Saito T., Ohashi K.,Utoh R. et al. Reversal of Diabetes by the Creation of Neo-Islet Tissues Into a Subcutaneous Site Using Islet Cell Sheets. Transplantation 2011; 92(11): 1231-6.
  54. Kelly C., McClenaghan N.H., Flatt P.R. Role of islet structure and cellular interactions in the control of insulin secretion. Islets 2011; 3(2): 41-7.
  55. Jain R., Lammert E. Cell-cell interactions in the endocrine pancreas. Diabetes Obes. Metab. 2009; 11 Suppl 4: 159-67.
  56. Valdes-Gonzalez R.A., Dorantes L.M.,Garibay G.N. et al. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: A 4-year study. Eur. J. Endocrinol. 2005; 153(3): 419-27.
  57. Li Y., Xue W.,Liu H. et al. Combined strategy of endothelial cells coating, sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft. PLoS One 2013; 8(2): e56696.
  58. Schulz T.C., Young H.Y., Agulnick A.D. et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 2012; 7(5):e37004.
  59. Kim K.,Ohashi K.,Utoh R. et al. Preserved liver-specific functions of hepatocytes in 3D co-culture with endothelial cell sheets. Biomaterials 2012; 33(5): 1406-13.
  60. Kim K.,Utoh R.,Ohashi K. et al. Fabrication of functional 3D hepatic tissues with polarizedhepatocytesby stacking endothelialcellsheets in vitro. J. Tissue Eng. Regen. Med.2015;121(5): 800.
  61. Ohashi K., Tatsumi K.,Tateno C.et al.Liver tissue engineering utilizing hepatocytes propagated in mouse livers in vivo. Cell Transplant. 2012; 21(2-3): 429-36.
  62. Nishida K., Yamato M., Hayashida Y. et al. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 2004; 77(3): 379-85.
  63. Nishida K., Yamato M., Hayashida Y. et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 2004; 351(12): 1187-96.
  64. Burillon C., Huot L., Justin V. et al. Cultured autologous oral mucosal epithelial cell sheet (CAOMECS) transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Invest. Ophthalmo. Visual Sci. 2012; 53(3): 1325-31.
  65. Kubota A., Nishida K., Yamato M. et al. Transplantable retinal pigment epithelial cell sheets for tissue engineering. Biomaterials 2006; 27(19): 3639-44.
  66. Yaji N., Yamato M., Yang J. et al. Transplantation of tissue-engineered cell sheets. Gastrointest.Endosc. 2009; 69(5): 253-4.
  67. Ohki T., Yamato M., Ota M. et al.Endoscopic transplantation of human oral mucosal epithelial cell sheets-world's first case of oral mucosal epithelial cell sheets in a canine model. Gut 2006; 55(12): 1704-10.
  68. Ohki T., Yamato M., Ota M. et al.Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered retinal pigment epithelial cell sheets in a rabbit model. Biomaterials 2009; 30(5): 797-803.
  69. Ohki T., Yamato M., Murakami D. et al.Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous cell sheets. Gastroenterology 2012; 143(3): 582-8.
  70. Arauchi A., Shimizu T., Yamato M. et al.Tissue-engineered thyroid cell sheet rescued hypothyroidism in rat models after receiving total thyroidectomycomparing with nontransplantation models. Tissue Eng. Part A 2009; 15(12): 3943-9.
  71. Kaneshiro N., Sato M., Ishihara M. et al.Cultured articular chondrocytes sheets for partial thickness cartilage defects utilizing temperature-responsive culture dishes.Eur. Cell Mater. 2007; 13: 87-92.
  72. Ebihara G., Sato M., Yamato M. et al.Cartilage repair in transplanted scaffold-free chondrocyte sheets using a minipig model. Biomaterials 2012; 33 (15): 3846-51.
  73. Yokoyama M., Sato M., Umezawa A. et al.Assessment of the safety of chondrocyte sheet implantation for cartilage regeneration. Tissue Eng. Part C Methods 2015; 22(1): 59-68.
  74. Sato M., Yamato M., Hamahashi K. et al.Articular cartilage regeneration using cellsheet technology. Anat. Rec. (Hoboken) 2014; 297(1): 36-43.
  75. Gong Y.Y., Xue J.X., Zhang W.J. et al.A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials 2011; 32(9): 2265-73.
  76. Tatsumi K., Sugimoto M.,Lillicrap D.et al. A novel cell-sheet technology that achieves durable factor VIII delivery in a mouse model of hemophilia A. PLoS One 2013; 8(12): e83280.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies