Plant and animal stem cells: two sides of the same medal



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review offers up-to-date analysis on plant stem cell biology, meristems functioning, including plant regeneration mechanisms and tumorigenesis, as well as biotechnology methods of plant tissue culture. There were also compared the plant and animal stem cells, their probable polyphyletic origin in aspect of divergent evolution of modular and unitary organisms in both plant and animal kingdoms.

Full Text

Restricted Access

About the authors

D. A Zubov

State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine; Biotechnology laboratory ilaya.regeneration, Medical company ilaya®,

Kiev, Ukraine

References

  1. Doonan J.H., Sablowski R. Walls around tumours - why plants do not develop cancer. Nature Reviews. Cancer 2010; 10: 794-802.
  2. Ramirez-Parra E., Desvoyes В., Gutierrez C. Balance between cell division and differentiation during plant development. Int. J. Dev. Biol. 2005; 49: 467-77.
  3. Ebel C., Mariconti L., Gruissem W. Plant retinoblastoma homologues control nuclear proliferation in the female gametophyte. Nature 2004; 429: 776-80.
  4. Stahl Y., Simon R. Plant stem cell niches. Int. J. Dev. Biol. 2005; 49: 479-89.
  5. Heidstra R., Sabatini S. Plant and animal stem cells: similar yet different. Nature Reviews. Mol. Cell Biol. 2014; 15: 301-12.
  6. Reinhardt D., Frenz M., Mandel T. et al. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Dev. 2003; 130: 4073-83.
  7. Dodueva I.E., Frolova N.V., Lutova L.A. Plant tumorigenesis: different ways for shifting systemic control of plant cell division and differentiation. Transgenic Plant J. 2007; 1: 3-24.
  8. Dessaux Y., Petit A., Tempe J. et al. Arginine catabolism in Agrobacterium strains: role of the Ti plasmid. J. Bact. 1986; 166: 44-50.
  9. Horsch R.B., Fraley R.T., Rogers S.G., Sanders P.R., Lloyd A., Hoffmann N. Inheritance of functional genes in plants. Science 1984; 223: 496-8.
  10. Pelczar P., Kalck V., Gomez D. et al. Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic T-DNA complexes in mammalian cells. EMBO reports 2004; 5: 632-7.
  11. Sola J.V., Almonacid G.V. Tumor-causing plant bacteria may infect animals. Medical Hypotheses 2006; 20: 1038-9.
  12. Gaillochet C., Lohmann J.U. The never-ending story: from pluripotency to plant developmental plasticity. Development 2015; 142: 2237-49.
  13. Frank M., Rupp H.M., Prinsen E. et al. Hormone autotrophic growth and differentiation identifies mutant lines of Arabidopsis with altered cytokinin and auxin content or signaling. Plant Physiology 2000; 122: 721-9.
  14. Lee J.H., Takei K., Sakakibara H. et al. CHRKl, a chitinase-related receptor-like kinase, plays a role in plant development and cytokinin homeostasis in tobacco. Plant Mol. Biol. 2003; 53: 877-90.
  15. Cairns J. Mutation selection and the natural history of cancer. Nature 1975; 255: 197-200.
  16. Rando T.A. The immortal strand hypothesis: segregation and reconstruction. Cell 2007; 129: 1239-43.
  17. Neumuller R.A., Knoblich J.A. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes & Dev. 2009; 23: 2675-99.
  18. Малахов В.В. Основные этапы эволюции эукариотных организмов. Палеонтологический журнал 2003; 6: 25-32.
  19. Жизнь растений. В 6-ти т. Т. 3. Водоросли. Лишайники. Под ред. М.М. Голлербаха. Москва: Просвещение; 1977: 487.
  20. Лотова Л.И. Морфология и анатомия высших растений. Москва: Эдиториал УРСС; 2001: 528.
  21. Herron M.D., Desnitskiy A.G., Michod R.E. Evolution of developmental programs in Volvox (Chlorophyta). J. Phycol. 2010; 46: 316-24.
  22. Kirk D.L. Seeking the ultimate and proximate causes of Volvox multicellularity and cellular differentiation. Integr. Comp. Biol. 2003; 43: 247-53.
  23. Muller W.A., Teo R., Frank U. Totipotent migratory stem cells in a hydroid. Dev. Biol. 2004; 275: 215-24.
  24. Barker N., Huch M., Kujala P. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 2010; 6: 25-36.
  25. Барнс Р., Кейлоу П., Олив П., Голдинг Д. Беспозвоночные: новый обобщенный подход. М.: Мир; 1992: 584.
  26. Funayama N. The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells). Dev. Genes Evol. 2013; 223: 23-38.
  27. Suga H., Ruiz-Trillo I. Development of ichthyosporeans sheds light on the origin of metazoan multicellularity. Dev. Biol. 2013; 377: 284-92.
  28. Niculescu V.F. The stem cell biology of the protist pathogen Entamoeba invadens in the context of eukaryotic stem cell evolution. Stem Cell Biol. Res. 2015; 2(2): 1-20.
  29. Schofield R. The relationship between the spleen colonyforming cell and the haemopoietic stem cell. Blood Cells 1978; 4: 7-25.
  30. Watt F.M., Hogan B.L.M. Out of Eden: stem cells and their niches. Science 2000; 287: 1427-30.
  31. Spradling A. et al. Stem cells find their niche. Nature 2001; 414: 98-104.
  32. Hall I.M. et al. Establishment and maintenance of a heterochromatin domain. Science 2002; 297: 2232-37.
  33. Mochizuki K., Fine N.A., Fujisawa T., Gorovsky M.A. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 2002; 110: 689-99.
  34. Taverna S.D., Coyne R.S., Allis C.D. Methylation of histone H3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell 2002; 110: 701-11.
  35. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-76.
  36. Vasil V., Hildebrandt A.C. Growth and tissue formation from single, isolated tobacco cells in microculture. Science 1965; 147: 1454-5.
  37. Vasil V., Hildebrandt A.C. Differentiation of tobacco plants from single, isolated cells in microcultures. Science 1965; 150: 889-92.
  38. Gallois J.-L., Woodward C., Reddy G.V. et al. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Dev. 2002; 129: 3207-17.
  39. Scofield S., Dewitte W., Nieuwland J. et al. The Arabidopsis homeobox gene SHOOT MERISTEMLESS has cellular and meristem-organisational roles with differential requirements for cytokinin and CYCD3 activity. Plant J. 2013; 75: 53-66.
  40. Тахтаджян А.Л. На пути к универсальной эволюционной науке. Грани эволюции. Статьи по теории эволюции. СПб.: Наука; 2007: 245-6.
  41. Заварзин А. А. Труды по теории параллелизма и эволюционной динамике тканей. (К 100-летию со дня рождения). Л.: Наука; 1986: 194.
  42. Шмальгаузен И. И. Проблемы дарвинизма. Л.: Наука; 1969: 493.
  43. Шмальгаузен И. И. Пути и закономерности эволюционного процесса. М.: Наука; 1982: 383.
  44. Красилов В.А. Эволюция и биостратиграфия. М.: Наука; 1977: 256.
  45. Алеев Ю.Г. Экоморфология и эволюция. Ж. Общ. Биол. 1988; 49(1): 27-34.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies