Different expression of hematopoietic-supporting genes in cord, placental and bone marrow mesenchymal stromal cells



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Human multipotent mesenchymal stromal cells (MMSC) from bone marrow (BM), umbilical cord (UC) and chorion villi (CV) were isolated and cultured in xeno-free media supplemented with AB human serum There were no differences in expression of CD31, CD33, CD34, CD45, CD90, СD105, CD117, HLA-ABC, HLA-DR between BM, UC and CV MMSC Human AB serum (5%) accelerated proliferation of UC MMSC in vitro. Expression of genes opn, scf, cxcl12, il-3, il-6, il-8, il-11, g-csf, gm-csf, epo, and nes was studied in Real-Time PCR. Up-regulation the expression gene nes in CV MMSC and genes g-csf and il-11 (but 6-fold down-regulation of cxcl12) in UC MMSC, was revealed when compared to BM MMSC (p<0. 03). Expression of il-6 and epo genes in MMCS did not differ. Trend to 10-fold increased expression of gene il-8 as well as cytokine content in UC MMSC vs BM MMCS was demonstrated CV MMSC revealed more differences from the UC MMSC than from the BM MMSC in expression of hematopoietic-supporting genes (opn, scf, il-11, p<0.03). Various abilities of mesenchymal cells from human BM, UC and placenta to express hematopoietic-supporting genes had to be taken into account in application of MMCS for generation of hematopoietic stem cells in vitro

Full Text

Restricted Access

About the authors

V. S Kostjunina

Republic Research & Production Center for Transfusiology and Medical Biotechnologies

N. V Petyovka

Republic Research & Production Center for Transfusiology and Medical Biotechnologies

Email: npet@blood.by

M. P Potapnev

Belarusian State Medical University

References

  1. Méndez-Ferrer S., Michurina T. V., Ferraro F. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466(7308): 829-34.
  2. Ding L., Saunders T. L., Enikolopov G. et al. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012; 481(7382): 457-62.
  3. Guerriero A., Worford L., Holland H. K. et al. Thrombopoietin is synthesized by bone marrow stromal cells. Blood 1997; 90(9): 3444-55
  4. Yasumizu R. , Toki J., Asou H. et al. Production of hematopoietic stem cell-chemotactic factor by bone marrow stromal cells Blood 1994; 83(4): 964-71.
  5. Шаманская Т. В. , Осипова Е.Ю. , Румянцев С. А. Ex vivo экспансия гемопоэтических стволовых клеток пуповинной крови (обзор литературы) Онкогематология 2012; 1: 35-45
  6. McNiece I., Harrington J., Turney J. et al. Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells Cytotherapy 2004; 6(4): 311-7.
  7. Walenda T., Bork S., Horn P. et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J. Cell. Mol. Med. 2010; 14(1-2): 337-50.
  8. Петёвка Н. В., Гончарова Н. В., Северин И. Н. и др. Пролиферация и дифференцировка предшественников миелоидного ростка кроветворения пуповинной крови человека при экспансии in vitro КТТИ 2012; 7(1): 40-8.
  9. Rodriguez-Pardo V. M., Vernot J. P. Mesenchymal stem cells promote a primitive phenotype CD34+ c-kit+ in human cord blood-derived hematopoietic stem cells during ex vivo expansion Cell Mol Biol. Lett. 2013; 18(1): 11-33.
  10. Jing D. , Fonseca A. V. , Alakel N. et al. Hematopoietic stem cells in co-culture with mesenchymal stromal cells-modeling the niche compartments in vitro. Haematologica 2010; 95(4): 542-50.
  11. Klein C. , Strobel J. , Zingsem J. et al. Ex vivo expansion of hematopoietic stem-and progenitor cells from cord blood in coculture with mesenchymal stroma cells from amnion, chorion, Wharton's jelly, amniotic fluid, cord blood, and bone marrow. Tissue Eng. Part A 2013; 19(23-24): 2577-85.
  12. Liu M., Yang S. G., Liu P.X. et al. Comparative study of in vitro hematopoietic supportive capability of human mesenchymal stem cells derived from bone marrow and umbilical cord. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2009; 17(5): 1294-1300.
  13. Bakhshi T. , Zabriskie R. C. , Bodie S. et al. Mesenchymal stem cells from the Wharton's jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion 2008; 48(12): 2638-44
  14. Lu L. L., Liu Y., Yang S. G. et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 2006; 91(8): 1017-26.
  15. Friedman R., Betancur M., Boissel L. et al. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation Biol. Blood Marrow Transplant. 2007; 13(12): 1477-86.
  16. Park C. W. , Kim K. S. , Bae S. et al. Cytokine secretion profiling of human mesenchymal stem cells by antibody array Int J Stem Cells 2009; 2(1): 59
  17. Wegmeyer H., Bröske A. M., Leddin M. et al. Mesenchymal stromal cell characteristics vary depending on their origin Stem Cells Dev. 2013; 22(19): 2606-18.
  18. Potian J A , Aviv H , Ponzio N. M. et al. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens J Immunol 2003; 171(7): 3426-34.
  19. Haynesworth S. E., Baber M.A., Caplan A. I. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: Effects of dexamethasone and IL-1a. J. Cell Physiol. 1996; 166(3): 585-92.
  20. Kosmacheva S. , Seviaryn I. , Goncharova N. et al. Hepatogenic potential of human bone marrow and umbilical cord blood mesenchymal stem cells. Bull. Exp. Biol. Med. 2011; 151(1): 142-9.
  21. Schmittgen T. D. , Livak K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008; 3(6): 1101-8.
  22. Martin M. J. , Muotri A. , Gage F. Human embryonic stem cells express an immunogenic nonhuman sialic acid Nat Med 2005; 11(2): 228-32.
  23. Fong C. Y. , Subramanian A. , Biswas A. et al. Derivation efficiency, cell proliferation, freeze-thaw survival, stem-cell properties and differentiation of human Wharton's jelly stem cells. Reprod. Biomed. Online 2010; 21(3): 391-401.
  24. Parolini O., Alviano F., Bagnara G. P. et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem cells 2008; 26(2): 300-11.
  25. Isaikina Y., Minakovskaya N., Aleinikova O. The influence of autologous marrow mesenchymal stem cell infusion on hematopoiesis reconstitution after hematopoietic stem cells autotransplantation in children with oncological and hematological diseases Cell Ther Transpl. 2008; 1(1): 35-42.
  26. Venugopal P., Balasubramanian S., Majumdar A. S. et al. Isolation, characterization, and gene expression analysis of Wharton's jelly-derived mesenchymal stem cells under xeno-free culture conditions. Stem Cells Cloning 2011; 4: 39-50.
  27. Hatlapatka T. , Moretti P. , Lavrentieva A. et al. Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions. Tissue Eng. Part C Methods 2011; 17(4): 485-93.
  28. Gekas C., Dieterlen-Lièvre F., Orkin S. H. et al. The placenta is a niche for hematopoietic stem cells. Dev. Cell 2005; 8(3): 365-75.
  29. Nie Y. , Han Y. C. , Zou Y. R. CXCR4 is required for the quiescence of primitive hematopoietic cells J Exp Med 2008; 205(4): 777-83
  30. Overstraeten-Schlögel V. , Beguin Y. , Gothot A. Role of stromal-derived factor-1 in the hematopoietic-supporting activity of human mesenchymal stem cells Eur J Haematol 2006; 76(6): 488-93
  31. Bussolino F. , Ziche M. , Wang J. M. et al. In vitro and in vivo activation of endothelial cells by colony-stimulating factors J Clin Invest. 1991; 87(3): 986.
  32. Jzumaki H., Okabe T., Sasaki N. et al. Identification and characterization of receptors for granulocyte colony-stimulating factor on human placenta and trophoblastic cells. PNAS USA 1989; 86(23): 9323-6
  33. Calhoun D.A., Donnelly W. H. , Yan Du J. et al. Distribution of granulocyte colony-stimulating factor (G-CSF) and G-CSF-receptor mRNA and protein in the human fetus. Pediatr. Res. 1999; 46(3): 333-8
  34. Robertson S. A. GM-CSF regulation of embryo development and pregnancy. Cytokine Growth Factor Rev. 2007; 18(3-4): 287-98.
  35. Ueda T., Tsuji K., Yoshino H. et al. Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor. J. Clin. Invest. 2000; 105(7): 1013.
  36. Wang L. S. , Liu H. J., Broxmeyer H. E. et al. Interleukin-11 enhancement of VLA-5 mediated adhesion of CD34+ cells from cord blood to fibronectin is associated with the PI-3 kinase pathway. In vivo 1999; 14(2): 331-7.
  37. Teramura M., Kobayashi S., Hoshino S. et al. Interleukin-11 enhances human megakaryocytopoiesis in vitro. Blood 1992; 79(2): 327-31
  38. Paiva P., Salamonsen L. A., Manuelpillai U. et al. Interleukin-11 promotes migration, but not proliferation, of human trophoblast cells, implying a role in placentation. Endocrinology 2007; 148(11): 5566-72.
  39. Broxmeyer H. E. , Sherry B. , Cooper S. et al. Comparative analysis of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells Interacting effects involving suppression, synergistic suppression, and blocking of suppression. J. Immunol. 1993; 150(8): 3448-58.
  40. Corre I. , Pineau D. , Hermouet S. Interleukin-8: an autocrine/ paracrine growth factor for human hematopoietic progenitors acting in synergy with colony stimulating factor-1 to promote monocyte-macrophage growth and differentiation. Exp. Hematol. 1999; 27(1): 28-36
  41. Johnson G. A. , Burghardt R. C. , Bazer F. W. et al. Osteopontin: roles in implantation and placentation Biol Reprod 2003; 69(5):1458-71.
  42. Ashman L. K. The biology of stem cell factor and its receptor C-kit. Int. J. Biochem. Cell Biol. 1999; 31(10): 1037-51.
  43. Lee H. J. , Jung J. , Cho K. J. et al. Comparison of in vitro hepatogenic differentiation potential between various placenta-derived stem cells and other adult stem cells as an alternative source of functional hepatocytes. Differentiation 2012; 84(3): 223-31.
  44. Костюнина В. С. , Васина Е. В. , Петёвка Н. В. Стимулирование дифференцировки стволовых кроветворных клеток пуповинной крови in vitro мезенхимными стромальными клетками пуповинно-плацентарного происхождения Известия Национальной академии наук Беларуси 2015; 1: 55-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies