Gene therapy approaches to the duchenne muscular dystrophy theatment



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Duchenne muscular dystrophy (DMD) is a common genetic disease which develops as a result of a mutation in the gene encoding dystrophin. In this review, the main experimental therapeutic approaches based on gene therapy are described. Independence of the type of mutation in the DMD gene is an advantage of the viral delivery of micro- and minidystrophin in muscle cells, but this method provides only a temporary effect. The specificity of the mutation also does not matter with an increase in the level of utrophin, however, this protein cannot fully replace dystrophin. The drugs which promote reading through the stop codon have low efficiency and are suitable for only 10-15% of patients with DMD. The most promising approach for the treatment of DMD is the exon skipping, which will suit 90% of patients. It can be implemented by antisense oligonucleotides or using the CRISPR/Cas9 genome editing system. CRISPR/Cas9-mediated exon skipping is thought to be the most promising approach, because it allows to make the necessary changes in the genome with great efficiency after single application.

Full Text

Restricted Access

About the authors

M. I Zaynitdinova

N.P. Bochkov Research Centre for Medical Genetics

Email: milyazayn@gmail.com
Moscow, Russia

SA. A Smirnikhina

N.P. Bochkov Research Centre for Medical Genetics

Email: milyazayn@gmail.com
Moscow, Russia

A. V Lavrov

N.P. Bochkov Research Centre for Medical Genetics

Email: milyazayn@gmail.com
Moscow, Russia

I. I Eremin

National Research Centre “Kurchatov Institute"; Institute of General Pathology and Pathophysiology

Email: milyazayn@gmail.com
Moscow, Russia

A. A Pulin

Institute of General Pathology and Pathophysiology; N.I. Pirogov Russian National Research Medical University

Email: milyazayn@gmail.com
Moscow, Russia

References

  1. Mccaffrey T., Guglieri M., Murphy A.P. et al. Cardiac involvement in female carriers of duchenne or becker muscular dystrophy. Muscle Nerve 2017; 55(6): 810-8.
  2. Ishizaki M., Kobayashi M., Adachi K. et al. Female dystrophinopathy: Review of current literature. Neuromuscul. Disord. 2018; 28(7): 572-81.
  3. Verma S., Goyal P., Beam C. et al. Turner syndrome and Duchenne muscular dystrophy. Muscle Nerve 2017; 56(2): E12-5.
  4. Николенко Н.Ю., Гончарова О.В., Артемьева С.Б. и др. Реабилитация детей с прогрессирующей мышечной дистрофией Дюшенна. Российский вестник перинатологии и педиатрии 2014; 4: 28-31.
  5. Никишина О.А., Соколова М.Г., Лобзин С.В. и др. Данные нейропсихологического исследования больных мышечной дистрофии Дюшенна. Здоровье - основа человеческого потенциала: проблемы и пути их решения 2016; 2: 629-31.
  6. Жданова Е.Б., Харламов Д.А., Белоусова Е.Д. Соматические нарушения при прогрессирующей мышечной дистрофии Дюшенна. Российский вестник перинатологии и педиатрии 2011; 5: 46-50.
  7. Simonds A.K., Muntoni F., Heather S. et al. Impact of nasal ventilation on survival in hypercapnic Duchenne muscular dystrophy. Thorax 1998; 53(11): 949-52.
  8. Lo Mauro A., Aliverti A. Physiology of respiratory disturbances in muscular dystrophies. Breathe (Sheff) 2016; 12(4): 318-27.
  9. Suresh S., Wales P., Dakin C. et al. Sleep-related breathing disorder in Duchenne muscular dystrophy: disease spectrum in the paediatric population. J. Paediatr. Child. Health 2005; 41: 500-3.
  10. Eagle M., Bourke J., Bullock R. et al. Managing Duchenne muscular dystrophy - the additive effect of spinal surgery and home nocturnal ventilation in improving survival. Neuromuscul. Disord. 2007; 17(6): 470-5.
  11. Passamano L., Taglia A., Palladino A. et al. Improvement of survival in Duchenne Muscular Dystrophy: retrospective analysis of 835 patients. Acta Myol. 2012; 31(2): 121-5.
  12. Koenig M., Monaco A.P., Kunkel L.M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 1988; 53(2): 219-28.
  13. Tennyson C.N., Klamut H.J., Worton R.G. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat. Genet. 1995; 9(2): 184-90.
  14. Peter A.K., Cheng H., Ross R.S. et al. The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog. Pediatr. Cardiol. 2011; 31(2): 83-8.
  15. Fairclough R.J., Wood M.J., Davies K.E. Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat. Rev. Genet. 2013; 14(6): 373-8.
  16. Nichols B., Takeda S., Yokota T. Nonmechanical Roles of Dystrophin and Associated Proteins in Exercise, Neuromuscular Junctions, and Brains. Brain Sci. 2015; 5(3): 275-98.
  17. Howard P.L., Dally G.Y., Ditta S.D. et al. Dystrophin isoforms DP71 and DP427 have distinct roles in myogenic cells. Muscle Nerve 1999; 22: 16-27.
  18. Nudel U., Zuk D., Einat P. et al. Duchenne muscular dystrophy gene product is not identical in muscle and brain. Nature 1989; 337: 76-8.
  19. Gorecki D.C., Monaco A.P., Derry J.M. et al. Expression of four alternative dystrophin transcripts in brain regions regulated by different promoters. Hum. Mol. Genet. 1992; 1: 505-10.
  20. D’Souza V.N., Nguyen T.M., Morris G.E. et al. A novel dystrophin isoform is required for normal retinal electrophysiology. Hum. Mol. Genet. 1995; 4: 837-42.
  21. Chamova T., Guergueltcheva V., Raycheva M. et al. Association between loss of dp140 and cognitive impairment in duchenne and becker dystrophies. Balkan J. Med. Genet. BJMG 2013; 16: 21-30.
  22. Doorenweerd N., Straathof C.S., Dumas E.M. et al. Reduced cerebral gray matter and altered white matter in boys with Duchenne muscular dystrophy. Ann. Neurol. 2014; 76: 403-11.
  23. Rapaport D., Fuchs O., Nudel U. et al. Expression of the Duchenne muscular dystrophy gene products in embryonic stem cells and their differentiated derivatives. J. Biol. Chem. 1992; 267: 21289-92.
  24. Sarig R., Mezger-Lallemand V., Gitelman I. et al. Targeted inactivation of Dp71, the major non-muscle product of the DMD gene: Differential activity of the Dp71 promoter during development. Hum. Mol. Genet. 1999; 8: 1-10.
  25. El Mathari B., Sene A., Charles-Messance H. et al. Dystrophin Dp71 gene deletion induces retinal vascular inflammation and capillary degeneration. Hum. Mol. Genet. 2015; 24: 3939-47.
  26. Vaillend C., Ungerer A. Behavioral characterization of mdx3cv mice deficient in C-terminal dystrophins. Neuromuscul. Disord. 1999; 9: 296-304.
  27. Lidov H.G. Dystrophin in the nervous system. Brain Pathol. 1996; 6: 63-77.
  28. Byers T.J., Lidov H.G., Kunkel L.M. An alternative dystrophin transcript specific to peripheral nerve. Nat. Genet. 1993; 4: 77-81.
  29. Tozawa T., Itoh K., Yaoi T. et al. The shortest isoform of dystrophin (Dp40) interacts with a group of presynaptic proteins to form a presumptive novel complex in the mouse brain. Mol. Neurobiol. 2012; 45: 287-97.
  30. Fujimoto T., Itoh K., Yaoi T. et al. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons. Biochem. Biophys. Res. Commun. 2014; 452: 79-84.
  31. Allen D.G., Whitehead N.P. Duchenne muscular dystrophy - what causes the increased membrane permeability in skeletal muscle? Int. J. Biochem. Cell Biol. 2011; 43(3): 290-4.
  32. Spencer M.J., Tidball J.G. Do immune cells promote the pathology of dystrophin-deficient myopathies? Neuromuscul. Disord. 2001; 11(6-7): 556-64.
  33. Sussman M. Duchenne muscular dystrophy. J. Am. Acad. Orthop. Surg. 2002; 10(2): 138-51.
  34. Kim J.H., Kwak H.B., Thompson L.V. et al. Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy. J. Muscle Res. Cell Motil. 2013; 34(1): 1-13.
  35. Зотова Е.Д., Решетов Д.А., Жерновков В.Е. и др. Анализ фенотипических проявлений делеций в гене дистрофина в контексте эффективности пропуска экзонов как метода терапии наследственных дистрофинопатий. Вестник РГМУ 2016; 3: 23-9.
  36. Monaco A.P., Bertelson C.J., Liechti-Gallati S. et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988; 2(1): 90-5.
  37. Aartsma-Rus A., Van Deutekom J.C., Fokkema I.F. et al. Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 2006; 34(2): 135-44.
  38. Campbell K.P. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 1995; 80(5): 675-9.
  39. van Putten M., Hulsker M., Young C. et al. Low dystrophin levels increase survival and improve muscle pathology and function in dystrophin/ utrophin double-knockout mice. FASEB J. 2013; 27: 2484-95.
  40. Li D., Yue Y., Duan D. Marginal level dystrophin expression improves clinical outcome in a strain of dystrophin/utrophin double knockout mice. PLoS One 2010; 5: e15286.
  41. Bladen C.L., Salgado D., Monges S. et al. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum. Mutat. 2015; 36(4): 395-402.
  42. Reinig A.M., Mirzaei S., Berlau D.J. Advances in the Treatment of Duchenne Muscular Dystrophy: New and Emerging Pharmacotherapies. Pharmacotherapy 2017; 37(4): 492-9.
  43. Rice M.L., Wong B., Horn P.S. et al. Cataract development associated with long-term glucocorticoid therapy in Duchenne muscular dystrophy patients. J. AAPOS 2018; 22(3): 192-6.
  44. Rafael J.A., Cox G.A., Corrado K. et al. Forced expression of dystrophin deletion constructs reveals structure-function correlations. J. Cell Biol. 1996; 134(1): 93-102.
  45. Harper S.Q., Hauser M.A., DelloRusso C. et al. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat. Med. 2002; 8(3): 253-61.
  46. MacKenzie T.C., Kobinger G.P., Louboutin J.P. et al. Transduction of satellite cells after prenatal intramuscular administration of lentiviral vectors. J. Gene Med. 2005; 7(1): 50-8.
  47. Kafri T., Blomer U., Peterson D.A. et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet. 1997; 17(3): 314-7.
  48. Li S., Kimura E., Fall B.M. et al. Stable transduction of myogenic cells with lentiviral vectors expressing a minidystrophin. Gene Ther. 2005; 12(14): 1099-108.
  49. Ragot T., Vincent N., Chafey P. et al. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature 1993; 361(6413): 647-50.
  50. Jani A., Lochmüller H., Acsadi G. et al. Generation, validation, and large scale production of adenoviral recombinants with large size inserts such as a 6.3 kb human dystrophin cDNA. J. Virol. Methods 1997; 64(2): 111-24.
  51. Deconinck N., Ragot T., Maréchal G. et al. Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. PNAS USA 1996; 93(8): 3570-4.
  52. Yoshimura M., Sakamoto M., Ikemoto M. et al. AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol. Ther. 2004; 10(5): 821-8.
  53. Yuasa K., Yoshimura M., Urasawa N. et al. Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products. Gene Ther. 2007; 14(17): 1249-60.
  54. Ohshima S., Shin J.H., Yuasa K. et al. Transduction efficiency and immune response associated with the administration of AAV8 vector into dog skeletal muscle. Mol. Ther. 2009; 17(1): 73-80.
  55. Bostick B., Yue Y., Lai Y. et al. Adeno-associated virus serotype-9 microdystrophin gene therapy ameliorates electrocardiographic abnormalities in mdx mice. Hum. Gene Ther. 2008; 19(8): 851-6.
  56. Shin J.H., Nitahara-Kasahara Y., Hayashita-Kinoh H. et al. Improvement of cardiac fibrosis in dystrophic mice by rAAV9-mediated microdystrophin transduction. Gene Ther. 2011; 18(9): 910-9.
  57. Hoshiya H., Kazuki Y., Abe S. et al. A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Mol. Ther. 2009; 17(2): 309-17.
  58. Benedetti S., Uno N., Hoshiya H. et al. Reversible immortalisation enables genetic correction of human muscle progenitors and engineering of next-generation human artificial chromosomes for Duchenne muscular dystrophy. EMBO Mol. Med. 2018; 10(2): 254-75.
  59. Sakurai H., Kawabata K., Sakurai F. et al. Innate immune response induced by gene delivery vectors. Int. J. Pharm. 2008; 354(1-2): 9-15.
  60. Zaldumbide A., Hoeben R.C. How not to be seen: immune-evasion strategies in gene therapy. Gene Ther. 2008; 15(4): 239-46.
  61. Chuah M.K., Collen D., Vanden Driessche T. Biosafety of adenoviral vectors. Curr. Gene Ther. 2003; 3(6): 527-43.
  62. Rothe M., Modlich U., Schambach A. Biosafety challenges for use of lentiviral vectors in gene therapy. Curr. Gene Ther. 2013; 13(6): 453-68.
  63. Лисковых М., Куприна Н., Ларионов В. и др. Искусственные хромосомы для генотерапии и тканезамещения. Клеточная трансплантология и тканевая инженерия 2012; 7(4): 8-20.
  64. Wu Z., Asokan A., Samulski R.J. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 2006; 14(3): 316-27.
  65. Okada T., Takeda S. Current challenges and future directions in recombinant AAV-mediated gene therapy of Duchenne muscular dystrophy. Pharmaceuticals 2013; 6(7): 813-36.
  66. Yue Y., Ghosh A., Long C. et al. A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol. Ther. 2008; 16(12): 1944-52.
  67. Ramos J.N., Hollinger K., Bengtsson N.E. et al. Development of Novel Micro-dystrophins with Enhanced Functionality. Mol. Ther. 2019; 27(3): 623-35.
  68. Patel A., Zhao J., Duan D. et al. Design of AAV Vectors for Delivery of Large or Multiple Transgenes. Methods Mol. Biol. 2019; 1950: 19-33.
  69. Kodippili K., Hakim C.H., Pan X. et al. Dual AAV Gene Therapy for Duchenne Muscular Dystrophy with a 7-kb Mini-Dystrophin Gene in the Canine Model. Hum. Gene Ther. 2018; 29(3): 299-311.
  70. Koo T., Popplewell L., Athanasopoulos T. et al. Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice. Hum. Gene Ther. 2014; 25(2): 98-108.
  71. Stevens A.J., Sekar G., Shah N.H. et al. A promiscuous split intein with expanded protein engineering applications. PNAS USA 2017; 114(32): 8538-43.
  72. Li J., Sun W., Wang B. et al. Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum. Gene Ther. 2008; 19(9): 958-64.
  73. Gao Y., Hisey E., Bradshaw T.W.A. et al. Plug-and-Play Protein Modification Using Homology-Independent Universal Genome Engineering. Neuron 2019; 103(4): 583-597.e8.
  74. Inacio P. Sarepta’s Gene Therapy Improves Muscle Function in 4 Boys with DMD, Phase 1/2 Trial Shows, https:// musculardystrophynews.com/2018/10/12/sarepta-dmd-gene-therapy-improves-muscle-function-4-boys-trial/
  75. Shin J.H., Pan X., Hakim C.H. et al. Microdystrophin ameliorates muscular dystrophy in the canine model of duchenne muscular dystrophy. Mol. Ther. 2013; 21(4): 750-7.
  76. Tinsley J.M., Blake D.J., Roche A. Primary structure of dystrophin-related protein. Nature 1992; 360(6404): 591-3.
  77. Schofield J., Houzelstein D., Davies K. et al. Expression of the dystrophin-related protein (utrophin) gene during mouse embryogenesis. Dev. Dyn. 1993; 198(4): 254-64.
  78. Khurana T.S., Davies K.E. Pharmacological strategies for muscular dystrophy. Nat. Rev. Drug. Discov. 2003; 2(5): 379-90.
  79. Miura P., Jasmin B.J. Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: how close are we? Trends Mol. Med. 2006; 12(3): 122-9.
  80. Fisher R., Tinsley J.M., Phelps S.R. et al. Non-toxic ubiquitous overexpression of utrophin in the mdx mouse. Neuromuscul. Disord. 2001; 11(8): 713-21. Гены & Клетки, том XIV, № 4, 2019
  81. Belanto J.J., Mader T.L., Eckhoff M.D. et al. Microtubule binding distinguishes dystrophin from utrophin. PNAS USA 2014; 111(15): 5723-8.
  82. Weir A.P., Burton E.A., Harrod G.et al. A- and B-utrophin have different expression patterns and are differentially up-regulated in mdx muscle. J. Biol. Chem. 2002; 277(47): 45285-90.
  83. Kennedy T.L., Guiraud S., Edwards B. Micro-utrophin Improves Cardiac and Skeletal Muscle Function of Severely Affected D2/mdx Mice. Mol. Ther. Methods Clin. Dev. 2018; 11: 92-105.
  84. Tinsley J.M., Fairclough R.J., Storer R. et al. Daily treatment with SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLoS One 2011; 6(5): e19189.
  85. Courdier-Fruh I., Briguet A. Utrophin is a calpain substrate in muscle cells. Muscle Nerve 2006; 33: 753-9.
  86. Ricotti V., Spinty S., Roper H. et al. Safety, Tolerability, and Pharmacokinetics of SMT C1100, a 2-Arylbenzoxazole Utrophin Modulator, following Single- and Multiple-Dose Administration to Pediatric Patients with Duchenne Muscular Dystrophy. PLoS One 2016; 11(4): e0152840.
  87. Muntoni F., Tejura B., Spinty S. et al. A Phase 1b Trial to Assess the Pharmacokinetics of Ezutromid in Pediatric Duchenne Muscular Dystrophy Patients on a Balanced Diet. Clin. Pharmacol. Drug Dev. 2019; 8(7): 922-33.
  88. Xia B., Hoyte K., Kammesheidt A. et al. Overexpression of the CT Gal-NAc transferase in skeletal muscle alters myofiber growth, neuromuscular structure, and laminin expression. Dev. Biol. 2002; 242(1): 58-73.
  89. Yoon J.H., Johnson E., Xu R. et al. Comparative proteomic profiling of dystroglycan-associated proteins in wild type, mdx, and Galgt2 transgenic mouse skeletal muscle. J. Proteome Res. 2012; 11(9): 4413-24.
  90. Martin P.T., Xu R., Rodino-Klapac L.R. et al. Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice. Am. J. Physiol. Cell Physiol. 2009; 296(3): 476-88.
  91. Xu R., Jia Y., Zygmunt D.A. et al. rAAVrh74.MCK.GALGT2 Protects against Loss of Hemodynamic Function in the Aging mdx Mouse Heart. Mol. Ther. 2019; 27(3): 636-49.
  92. White T.A., LeBrasseur N.K. Myostatin and sarcopenia: opportunities and challenges - a mini-review. Gerontol. 2014; 60(4): 289-93.
  93. Bogdanovich S., Krag T.O., Barton E.R. et. al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002; 420(6914): 418-21.
  94. Wagner K.R., Fleckenstein J.L., Amato A.A. et al. A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann. Neurol. 2008; 63(5): 561-71.
  95. Cadena S.M., Tomkinson K.N., Monnell T.E. et al. Administration of a soluble activin type IIB receptor promotes skeletal muscle growth independent of fiber type. J. Appl. Physiol. 2010; 109(3): 635-42.
  96. Campbell C., McMillan H.J., Mah J.K. et al. Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo-controlled clinical trial. Muscle Nerve 2017; 55(4): 458-64.
  97. Roberts T.C., Andaloussi S.E., Morris K.V. et al. Small RNA-Mediated Epigenetic Myostatin Silencing. Mol. Ther. Nucleic Acids 2012; 1: e23.
  98. Renz M., Otten C., Faurobert E. et al. Regulation of β1 integrin-Klf2-mediated angiogenesis by CCM proteins. Dev. Cell 2015; 32(2): 181-90.
  99. McDonald C.M., Campbell C., Torricelli R.E. et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390(10101): 1489-98.
  100. Davies J., Gorini L., Davis B.D. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol. Pharmacol. 1965; 1(1): 93-106.
  101. Palmer E., Wilhelm J.M., Sherman F. Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature 1979; 277(5692): 148-50.
  102. Barton-Davis E.R., Cordier L., Shoturma D.I. et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J. Clin. Invest. 1999; 104(4): 375-81.
  103. Malik V., Rodino-Klapac L.R., Viollet L. et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann. Neurol. 2010; 67(6): 771-80.
  104. Shimizu-Motohashi Y., Miyatake S., Komaki H. et al. Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: From discovery to clinical trials. Am. J. Transl. Res. 2016; 8(6): 2471-89.
  105. Finkel R.S., Flanigan K.M., Wong B. et al. Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PLoS One 2013; 8(12): e81302.
  106. McDonald C.M., Campbell C., Torricelli R.E. et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390(10101): 1489-98.
  107. Peripheral and Central Nervous System Drugs Advisory Committee Meeting. FDA Briefing Document. NDA 200896, Ataluren, Sep 28, 2017, https://www.fda.gov/media/107625/download.
  108. Phase II Study of NPC-14 (Arbekacin Sulfate) to Explore Safety, Tolerability, and Efficacy in Duchenne Muscular Dystrophy (NORTH POLE DMD), https://clinicaltrials.gov/ct2/show/NCT01918384?term=NPC-14&rank=1
  109. Kole R., Leppert B.J. Targeting mRNA splicing as a potential treatment for Duchenne muscular dystrophy. Discov. Med. 2012; 14(74): 59-69.
  110. van Deutekom J.C., van Ommen G.J. Advances in Duchenne muscular dystrophy gene therapy. Nat. Rev. Genet. 2003; 4(10): 774-83.
  111. Crawford G.E., Lu Q.L., Partridge T.A. et al. Suppression of revertant fibers in mdx mice by expression of a functional dystrophin. Hum. Mol. Genet. 2001; 10(24): 2745-50.
  112. Lu Q.L., Morris G.E., Wilton S.D. et al. Massive idiosyncratic exon skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant fibers by clonal expansion. J. Cell Biol. 2000; 148(5): 985-96.
  113. Yokota T., Lu Q.L., Morgan J.E. et al. Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration. J. Cell Sci. 2006; 119(13): 2679-87.
  114. Alter J., Lou F., Rabinowitz A. et al. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat. Med. 2006; 12(2): 175-7.
  115. Aartsma-Rus A., Janson A.A., Kaman W.E. et al. Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am. J. Hum. Genet. 2004; 74(1): 83-92.
  116. Watanabe N., Nagata T., Satou Y. et al. NS-065/NCNP-01: An Antisense Oligonucleotide for Potential Treatment of Exon 53 Skipping in Duchenne Muscular Dystrophy. Mol. Ther. Nucleic Acids 2018; 13: 442-9.
  117. Amoasii L., Long C., Li H. et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci. Transl. Med. 2017; 9(418): pii: eaan8081.
  118. Melis M.A., Cau M., Muntoni F. et al. Elevation of serum creatine kinase as the only manifestation of an intragenic deletion of the dystrophin gene in three unrelated families. Eur. J. Paediatr. Neurol. 1998; 2(5): 255-61.
  119. Nakamura A., Takeda S. Exon-skipping therapy for Duchnne muscular dystrophy. Neuropathology 2009; 29(4): 494-501.
  120. Echigoya Y., Mouly V., Garcia L. et al. In silico screening based on predictive algorithms as a design tool for exon skipping of oligonucleotides in Duchenne muscular dystrophy. PLoS One 2015; 10(3): e0120058.
  121. Fletcher S., Honeyman K., Fall A.M. et al. Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J. Gene Med. 2006; 8(2): 207-16.
  122. Aoki Y., Yokota T., Nagata T. et al. Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. PNAS USA 2012; 109(34): 13763-8.
  123. Yokota T., Lu Q.L., Partridge T. et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann. Neurol. 2009; 65(6): 667-76.
  124. Echigoya Y., Nakamura A., Nagata T. et al. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. PNAS USA 2017; 114(16): 4213-8.
  125. Shimizu-Motohashi Y., Komaki H., Motohashi N. et al. Restoring Dystrophin Expression in Duchenne Muscular Dystrophy: Current Status of Therapeutic Approaches. J. Pers. Med. 2019; 9(1): pii: E1.
  126. Lim K.R.Q., Maruyama R., Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des. Devel. Ther. 2017; 11: 533-45.
  127. Stein C.A. Eteplirsen Approved for Duchenne Muscular Dystrophy: The FDA Faces a Difficult Choice. Mol. Ther. 2016; 24(11): 1884-5.
  128. Dowling J.J. Eteplirsen therapy for Duchennemuscular dystrophy: skipping to the front of the line. Nat. Rev. Neurol. 2016; 12(12): 675-6.
  129. Mendell J.R., Goemans N., Lowes L.P. et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann. Neurol. 2016; 79(2): 257-71.
  130. Aartsma-Rus A., Krieg A.M. FDA Approves Eteplirsen for Duchenne Muscular Dystrophy: The Next Chapter in the Eteplirsen Saga. Nucleic Acid Ther. 2017; 27(1): 1-3.
  131. Draft Evidence Report. Deflazacort, Eteplirsen, and Golodirsen for Duchenne Muscular Dystrophy: Effectiveness and Value. May 22, 2019, https://icer-review.org/wp-content/uploads/2018/12/ICER_DMD_ Draft_Evidence_Report_0522019.pdf.
  132. van Putten M., van der Pijl E.M., Hulsker M. et al. Low dystrophin levels in heart can delay heart failure in mdx mice. J. Mol. Cell. Cardiol. 2014; 69: 17-23
  133. Wasala N.B., Yue Y., Vance J. et al.Uniform low-level dystrophin expression in the heart partially preserved cardiac function in an aged mouse model of Duchenne cardiomyopathy. J. Mol. Cell. Cardiol. 2017; 102: 45-52.
  134. BioInfo. CRISPR-P 2.0: an improved CRISPR/Cas9 tool for genome editing in plants, http://crispr.hzau.edu.cn/CRISPR2/.
  135. Ran F.A., Hsu P.D., Wright J. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013; 8(11): 2281-308.
  136. Nelson C.E., Hakim C.H., Ousterout D.G. et al. In vivo genome editing improves muscle function in a mouse model of duchenne muscular dystrophy. Science 2016; 351(6271): 403-7.
  137. Long C., Amoasii L., Mireault A.A. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016; 351(6271): 400-3.
  138. Min Y.L., Li H., Rodriguez-Caycedo C. et al. CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Sci. Adv. 2019; 5(3): eaav4324.
  139. Ousterout D.G., Kabadi A.M., Thakore P.I. et al. Multiplex CRISPR/ Cas9-based genome editing for correction of dystrophin mutations that cause duchenne muscular dystrophy. Nat. Commun. 2015; 6: 6244.
  140. Xu L., Park K.H., Zhao L. et al. Crispr-mediated genome editing restores dystrophin expression and function in MDX mice. Mol. Ther. 2016; 24(3): 564-9.
  141. Bengtsson N.E., Hall J.K., Odom G.L. et al. Muscle-specific CRISPR/ Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for duchenne muscular dystrophy. Nat. Commun. 2017; 8: 14454.
  142. Amoasii L., Hildyard J.C.W., Li H. et al. Gene editing restores dystrophin expression in a canine model of duchenne muscular dystrophy. Science 2018; 362(6410): 86-91.
  143. Young C.S., Hicks M.R., Ermolova N.V. et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 2016; 18(4): 533-40.
  144. Kyrychenko V., Kyrychenko S., Tiburcy M. et al. Functional correction of dystrophin actin binding domain mutations by genome editing. JCI Insight 2017; 2(18): pii: 95918.
  145. Long C., Li H., Tiburcy M. et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci. Adv. 2018; 4(1): eaap9004.
  146. Koo T., Okada T., Athanasopoulos T. et al. Long-term functional adeno-associated virus-microdystrophin expression in the dystrophic CXMDj dog. J. Gene Med. 2011; 13(9): 497-506.
  147. Hakim C.H., Wasala N.B., Nelson C.E. et al. AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice. JCI Insight 2018; 3(23): pii: 124297.
  148. Godfrey C., Muses S., McClorey G. et al. How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse. Hum. Mol. Genet. 2015; 24(15): 4225-37.
  149. Rodino-Klapac L.R., Montgomery C.L., Bremer W.G. et al. Persistent expression of FLAG-tagged micro dystrophin in nonhuman primates following intramuscular and vascular delivery. Mol. Ther. 2010; 18(1): 109-17.
  150. Mingozzi F., High K.A. Immune responses to AAV in clinical trials. Curr. Gene Ther. 2011; 11(4): 321-30.
  151. Corti M., Cleaver B., Clément N. et al. Evaluation of Readministration of a Recombinant Adeno-Associated Virus Vector Expressing Acid Alpha-Glucosidase in Pompe Disease: Preclinical to Clinical Planning. Hum. Gene Ther. Clin. Dev. 2015; 26(3): 185-93.
  152. Kornegay J.N., Li J., Bogan J.R. et al. Wide spread muscle expression of an AAV9 human mini-dystrophin vector after intravenous injection in neonatal dystrophin-deficient dogs. Mol. Ther. 2010; 18: 1501-8.
  153. Hinderer C., Katz N., Buza E.L. et al. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum. Gene Ther. 2018; 29(3): 285-98.
  154. Yue Y., Pan X., Hakim C.H. et al. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum. Mol. Genet. 2015; 24(20): 5880-90.
  155. Смирнихина С.А., Анучина А.А., Кочергин-Никитский К.С. и др. Экспериментальные подходы к таргетному редактированию гена CFTR с помощью CRISPR-Cas9. Вестник РГМУ 2018; 2: 15-21. (Smirnikhina S.A., Anuchina A.A., Kochergin-Nikitsky K.S. et al. Experimental approaches to the target editing of the CFTR gene using CRISPR-Cas9. Bulletin of RSMU 2018; 2: 15-21).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies