Neural markers in investigation of stem cells differentiation



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Investigation of stem cells differentiation substantiates the reasonability of use and confirms clinical effectiveness of new developments in cellular technology. Immunocytochemical methods of revealing of synthesized marker proteins are widely used in evaluation of stem cells differentiation. This review contains characteristics of the most often used markers of neural differentiation that are used in investigation of histoblastic potencies of stem [including neural stem/progenitor) cells. These neuromarkers include nuclear protein of nerve cells NeuN, beta-tubulin III, protein MAP2 associated with microtubules, proteins of neurofilaments, neuron-specific enolase, synaptophysin and molecule of nerve cells adhesion CPSA-NCAM] connected to polysialic acid. The study evaluates the specificity of these markers and reveals the advantages and disadvantages of methods used for their detection. It is emphasized that detection of some proteins expression cannot serve as an unequivocal evidence of stem cells differentiation into neurons. The most neuronspecific markers are: NeuN, neurofilament proteins and synaptophysin.

About the authors

D E Korzhevskiy

E S Petrova

OB Kirik

G V Beznin

E G Sukhorukova

O E Korzhevskii

Institute for experimental medicine of Russian academy of medical sciences, Saint Petersburg

Institute for experimental medicine of Russian academy of medical sciences, Saint Petersburg

E S Petrova

Institute for experimental medicine of Russian academy of medical sciences, Saint Petersburg

Institute for experimental medicine of Russian academy of medical sciences, Saint Petersburg

O V Kirik

Institute for experimental medicine of Russian academy of medical sciences, Saint Petersburg

Institute for experimental medicine of Russian academy of medical sciences, Saint Petersburg

G V Beznin

Institute for experimental medicine of Russian academy of medical sciences, Saint Petersburg

Institute for experimental medicine of Russian academy of medical sciences, Saint Petersburg

E G Suchorukova

Institute for experimental medicine of Russian academy of medical sciences, Saint Petersburg

Institute for experimental medicine of Russian academy of medical sciences, Saint Petersburg

References

  1. Mullen R.J., Buck C.R., Smith A.M. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1ЭЭ2; 11БС1): 201-11.
  2. Soylemezoglu F., OnderS., Tezel G.G., Berker M. Neuronal nuclear antigen [Neu N): a new tool in the diagnosis of central neurocytoma. Pathol. Res. Pract. 2003; 199(7): 4БЗ-8.
  3. Wolf H.K., Buslei R., Schmidt-Kastner R. et al. Neu N: a useful neuronal marker for diagnostic histopathology. J. Histochem. Cytochem. 199B; 44(10): 1167-71.
  4. Hess D.C., Hill W.D., Martin-Studdard et al. Bone marrow as a source of endothelial cells and Neu N-expressing cells after stroke. Stroke. 2002; 33(5): 13B2-8.
  5. Tanvig M., Blaabjerg M., Andersen R.K. et al. A brain slice culture model for studies of endogenous and exogenous precursor cell migration in the rostral migratory stream. Brain Res. 2009; (1295):1-12.
  6. B. Kim K.K., Adelstein R.S., Kawamoto S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J. Biol. Chem. 2009; 284 (45): 31052-61.
  7. Коржевский Д.Э., Петрова E.C., Кирик О.В., Отеллин В.А. Оценка дифференцировки нейронов в эмбриогенезе крысы с использованием иммуноцитохимического выявления даблкортина. Морфология. 2008; 133(41:7-10.
  8. Weyer A., Schilling К. Developmental and cell type-specific expression of the neuronal marker Neu n in the murine cerebellum. J. Neurosci. Res. 2003; 73(3): 400-9
  9. Friese A., Kaltschmidt J.A., Ladle D.R. et al. Gamma and alpha motor neurons distinguished by expression of transcription factor ЕггЗ. Proceedings of the National Academy of Sciences of the USA. 2009; V. 106, N32: 13588-93.
  10. Shneider N.A., Brown M.N., Smith C.A., Pickel J., Alvarez F.J. Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival // Neural Development. 2009; 4(1): 42.
  11. Cannon J.R., Greenamyre J.T. Neu N is not a reliable marker of dopamine neurons in rat substantia nigra. Neurosci. Lett. 2009; 464(1): 14-7
  12. Kumar S.S., Buckmaster P.S. Neuron-specific nuclear antigen NeuN is not detectable in gerbil subtantia nigra pars reticulata. Brain Res. 2007; (1142): 54-60.
  13. Кирик О.В., Сухорукова Е.Г., Власов Т.Д., Коржевский Д.Э. Селективная гибель нейронов стриатума крысы после транзиторной окклюзии сред-ней мозговой артерии. Морфология. 2009; 135(21:80-2.
  14. Tippett L.J., Waldvogel H.J., Thomas S.J. et al. Striosomes and mood dysfunction in Huntington's disease. Brain. 2007; 130(Pt. 1): 206-21.
  15. Butler T.R., Self R.L., Smith K.J. et al. Mulholland P.J., Prendergast M.A. Selective vulnerability of hippocampal cornu ammonis 1 pyramidal cells to excitotoxic insult is associated with the expression of polyamine-sensitive N-methyl-d-asparate-type glutamate receptors. Neurosci. 2010; 165(21: 525-34.
  16. Banerjee A., Roach M.C., Trcka P., Luduena R.F. Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of beta-tubulin. J. Biol. Chem. 1990; 265(3): 1794-9.
  17. Khan I.A., Luduena R.F. Phosphorylation of beta lll-tubulin. Biochem. 1996; 35(121: 3704-11.
  18. Slapnickova K., Kolarova P., Kynclova K. Labelling of the anti-lll-neurotubulin monoclonal antibody by 99mTc and its binding to responsible antigen. Nucl. Med. Rev. Cent. East. Eur. 2007; 10(11: 1-5.
  19. Fanarraga M.L., Avila J., Zabala J.С Expression of unphosphorylated class III beta-tubulin isotype in neuroepithelial cells demonstrates neuroblast commitment and differentiation. Eur. J. Neurosci. 1999; 11(2): 516-527.
  20. Draberova E., Lukas Z., Ivanyi D. et al. Expression of class III beta-tubulin in normal and neoplastic human tissues. Histochem. Cell Biol. 1998; 109(3): 231-9.
  21. Liu L., Geisert E.E., Frankfurter A. et al. A transgenic mouse class-Ill beta tubulin reporter using yellow fluorescent protein. Genesis. 2007; 45(9): 560-9.
  22. Bystron I., Rakic P., Molnar Z., Blakemore С The first neurons of the human cerebral cortex. Nature Neurosci. 2006; 9(7): 880-6.
  23. Wang Z., Wang H., Wu J. et al. Enhanced co-expression of beta-tubulin III and choline acetyltransferase in neurons from mouse embryonic stem cells promoted by icaritin in an estrogen receptor-independent manner. Chem. Biol. Interact. 2009; 179(2-3): 375-85. 24. Katsetos CD., Del Valle L., Geddes J.F. et al. Localization of the neuronal class III beta-tubulin in oligodendrogliomas: comparison with Ki-67 proliferative index and 1p/19q status. J. Neuropathol. Exp. Neurol. 2002; 61(4): 307-20. 25. Katsetos CD., Del Valle L., Geddes J.F. et al. Aberrant localization of the neuronal class III beta-tubulin in astrocytomas. Arch. Pathol. Lab. Med. 2001; 125(5): 613-24.
  24. Jouhilahti E.M., Peltonen S., Peltonen J. Class III beta-tubulin is a component of the mitotic spindle in multiple cell types. J. Histochem. Cytochem. 2008; 56(12): 1113-9.
  25. Lee S., Choi K., Ahn H. et al. TuJ1 (class III beta-tubulin] expression suggests dynamic redistribution of follicular dendritic cells in lymphoid tissue. Eur. J. Cell Biol. 2005; 84(2-3): 453-9.
  26. Draberova E., Del Valle L., Gordon J. et al. Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin n midgestational human fetal astrocytes: implications for phenotypic identity. J. Neuropathol. Exp. Neurol. 2008; 67(4): 341-54.
  27. Goedert M., Crowther R.A., Garner C.C Molecular characterization of microtubule-associated proteins tau and MAP2. Trends. Neurosci. 1991; 14(5): 193-9.
  28. Muller R., Heinrich M., Heck S. et al. Expression of microtubule-associated proteins MAP2 and tau in cultured rat brain oligodendrocytes. Cell Tissue Res. 1997; 288(2): 239-49.
  29. Kim H., Binder L.I., Rosenbaum J.L. The periodic association of MAP2 with brain microtubules in vitro. J. Cell Biol. 1979; 80(2): 266-76.
  30. Bernhardt R., Matus A. Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J. Сотр. Neurol. 1984; 226(2]: 203-21.
  31. Papasozomenos S.C., Binder L.I., Bender P.K., Payne M.R. Microtubule-associated protein 2 within axons of spinal motor neurons: associations with microtubules and neurofilaments in normal and beta, beta'-iminodipropionitrile-treated axons. J. Cell Biol. 1985; 100(1): 74-85.
  32. Di Stefano G., Casoli Т., Fattoretti P. et al. Distribution of map2 in hippocampus and cerebellum of young and old rats by quantitative immunohistochemistry. J. Histochem. Cytochem. 2DD1; 49(8): 1065-Б.
  33. ShiomuraY., Hirokawa N. Colocalization of microtubule-associated protein 1Aand microtubule-associated protein 2 on neuronal microtubules in situ revealed with double-label immunoelectron microscopy. J. Cell Biol. 1987; 104(6]: 1575-8.
  34. Pollard T.D., Selden S.C., Maupin P. Interaction of actin filaments with microtubules. J. Cell Biol. 1984; 99(Pt 1-2): 33-7.
  35. Hirokawa N., Hisanaga S.-l., Shiomura Y. MAP2 is a Component of Crossbridges Between Microtubules and Neurofilaments in the Neuronal Cytoskeleton: Quick-Freeze, Deep- Etch Immunoelectron Microscopy and Reconstitution Studies. J. Neurosci. 1988; 8(8): 2769-79.
  36. Ferhat L, Bernard A., Ribas de Pouplana L. et al. Structure, regional and developmental expression of rat MAP2d, a MAP2 splice variant encoding four microtubule-binding domains. Neurochem. Int. 1994; 25(4): 327-38.
  37. Quinlan E.M., Halpain S. Emergence of activity-dependent, bidirectional control of microtubule-associated protein MAP2 phosphorylation during postnatal development. J. Neurosci. 1996; 16(23): 7627-37.
  38. Matus A., Green G.D. Age-related increase in a cathepsin D like protease that degrades brain microtubule-associated proteins. Biochemistry. 1987; 26(25): 8083-6.
  39. Bystronl., MolnarZ., OtellinV., Blakemore С Tangential networks of precocious neurons and early axonal outgrowth in the embryonic human forebrain. J. Neurosci. 2005; 25(11): 2781-92.
  40. ChenY.Y., Zhang W., ChenY.L. etal. Electro-acupuncture improves survival and migration of transplanted neural stem cells in injured spinal cord in rats. Acupunct. Electrother. Res. 2008; 33(Pt 1-2): 19-31.
  41. Ha Y., Choi J.U., Yoon D.H. et al. Neural phenotype expression of cultured human cord blood cells in vitro. Neuroreport. 2001; 12(16): 3523-7.
  42. Charriere-Bertrand C, Garner C, Tardy M., Nunez J. Expression of various microtubule-associated protein 2 forms in the developing mouse brain and in cultured neurons and astrocytes. J. Neurochem. 1991; 56(2): 385-91.
  43. Richter-Landsberg C, Gorath M. Developmental regulation of alternatively spliced isoforms of mRNA encoding MAP2 and tau in rat brain oligodendrocytes during culture maturation. J. Neurosci. Res. 1999; 56(3): 259-70.
  44. Wiche G., Briones E., Koszka С et al. Widespread occurrence of polypeptides related to neurotubuleassociated proteins (MAP-1 and MAP-2) in non-neuronal cells and tissues. J. EMBO. 1984; 3(5): 991-8.
  45. Liu S.Y., Chen Y.T., Tseng M.Y. et al. Involvement of microtubule-associated protein 2 (MAP2) in oral cancer cell motility: a novel biological function of MAP2 in non-neuronal cells. Biochem. Biophys. Res. Commun. 2008; 366(2): 520-5.
  46. Hoffman P.N., Lasek R.J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J.Cell.Biol.1975; 66(2): 351-66.
  47. Sawant L.A., Hasgekar N.N., Vyasarayani L.S. Developmenta expression of neurofilament and glial filament proteins in rat cerebellum. Int.J.Dev.Biol. 1994; 38(3): 429-37.
  48. Petzold A., Gveric D., Groves M. et al. Phosphorylation and compactness of neurofilaments in multiple sclerosis: indicators of axonal pathology. Exp. Neurol. 2008; 213(2): 326-35.
  49. Козлова E.H., Александрова M.A. Экспрессия белка нейрофиламентов в неокортикальных трансплантатах. Доклады АН СССР. 1991; 321(2): 386-9.
  50. Tseng P.Y., Chen C.J., Sheu С.С. etal. Spontaneous differentiation of adult rat marrow stromal cells in a long-term culture. J. Vet. Med. Sci. 2007; 69(2): 95-102.
  51. Alexanian A.R., Maiman D.J., Kurpad S.N., Gennarelli Т.Д. In vitro and in vivo characterization of neurally modified mesenchymal stem cells induced by epigenetic modifiers and neural stem cell environment. Stem. Sells. Dev. 2008; 17(6): 1123-30.
  52. Zhao L.R., Duan W.M., Reyes M. et al. Human bone marrow stromal cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp.Neurol. 2002; 174(1): 11-20.
  53. Чумасов Е.И., Петрова E.C., Коржевский Д.Э. Иммуногистохимйческое исследование иннервации сердца крысы. Морфология. 2009; 135(2): 33-7.
  54. Park A.M., Arrmin S., Azarbal A. et al. Distribution of cardiac nerves in patients with diabetes mellitus: an immunohistochemica postmortem study of human hearts. Cardiovasc. Pathol. 2002; 11(6): 326-31.
  55. Челышев Ю.А., Рагинов И.С, Гусева Д.С, Масгутов Р.Ф. Выживание и фенотипическая характеристика аксотомированных нейронов спинальных ганглиев. Морфология. 2004; 125(3): 45-9.
  56. Нага К., Shimada A., Morita Т. et al Olfactory neuroepithelioma in a dog: an immunohistochemical and electron microscopic study. J. Vet. Med. Sci. 2002; 64(4): 391-3.
  57. Molenaar W.M., Baker D.L., Pleasure D. et al. The neuroendocrine and neural profiles of neuroblastomas, ganglioneuroblastomas and ganglioneuromas. Am.J.Pathol. 1990; 136(2): 375-82.
  58. Uchida K., Murakami Т., Tometsuka T. et al. Peripheral neuroblastoma and primitive neuroectodermal tumor in Japanese black cattle. J.Vet.Med.Sci. 1998; 60(7): 871-5.
  59. Ghilusi M., Plesea I.E., Comanescu M. et al. Preliminary study regarding the utility of certain immunohistochemical markers in diagnosing neurofibromas and schwannomas. Romanian J. Morphol. And Embryol. 2009; 50(2): 195-202.
  60. Davidoff M.S., Middendorff R., Pusch W. et al. Sertoli and Leydig cells of the human testis express neurofilament triplet proteins. Histochem. Cell. Biol. 1999; 111(3): 173-87.
  61. Craig S.P., Day I.N.M., Thompson R.J., Craig I.W. Localisation of neuron-specific enolase (EN02) to 12p13. Cytogen. Cell Genet. 1990; (54): 71-3.
  62. Hullin D.A., Brown K., Kynoch P.A. et al. Purificaton, radioimmunoassay, and distribution of human brain 14-3-2 protein [nervous-system specific enolase) in human tissues. Biochim. Biophys. Acta. 1980; 628(1): 98-108.
  63. Iwanaga Т., Takahashi Y., Fujita T. Immunohistochemistry of neuron-specific and glia-specific proteins. Arch. Histol. Cytol. 1989; (52): 13-24.
  64. Schmechel D.E., Maragos P.J., Zis A.P. et al. The brain enolases as specific markers of neuronal and glial cells. Science. 1978; 199(4326): 313-5.
  65. Marangos P.J., Schmechel D.E The neurobiology of the brain enolases. Essays. Neurochem. Neuropharmacol. 1980; (4): 211-47.
  66. Pickel V.M., Reis D.J., Maragos P.J., Zomzely-Neurath С Immunocytochemical localization of nervous system specific protein (NSP-R) in rat brain. Brain Res. 1976; 105(1): 184-7.
  67. Vinores S.A., Herman M.M., Rubinstein L.J., Marangos P.J. Electron Microscopic Localization of neuron-specific enolase in rat amd mouse brain. J. Histochem. Cytochem. 1984; 32(12): 1295-1302.
  68. Mitchell K.E., Weiss M.L., Mitchell B.M. et al. Matrix cells from Wharton's jelly form neurons and glia. Sterm. Cells. 2003; 21(1): 50-60.
  69. Suon S., Jin H., Donaldson A.E., Caterson E.J. et al. Transient differentiation of adult human bone marrow cells into neuron-like cells in culture: development of morphological and biochemical traits is mediated by different molecular mechanisms. Sterm. Cells Dev. 2004; 13(6): 625-35.
  70. Ray В., Bailey J.A., Sarkar S., Lahiri D.K. Molecular and immunocytochemical characterization of primary neuronal cultures from adult rat brain: Differential expression of neuronal and glial protein markers. J. Neurosci. Methods. 2009; 184(2): 294-302.
  71. Yardimoglu M., Ilbay G., Dalcik С et al. immunocytochemistry of neuron specific enolase (NSE) in the rat brain after single and repeated epileptic seizures. Int. J. Neurosci. 2008; 118(7): 981-3.
  72. Dhillon A.P., Rode J., Dhillon D.P. et al. Neural markers in carcinoma of the lung. Br. J. Cancer. 1985; 51(5): 645-52.
  73. Коршунов А.Г., Сычева З.И., Голанов А.В. Иммуно-гистохимическая характеристика нейроцитом больших полушарий головного мозга. Архив патологии. 1997; 59(1): 51-7.
  74. Deloulme J.С, Lucas М., Gaber С. et al. Expression of the neuron-specific enolase gene by rat oligodendroglia cells during their differentiation. J. Neurochem. 1996; 66(3): 936-45.
  75. Sensenbrenner M., Lucas M., Deloume J.С Expression of two neuronal markers, growth-associated protein 43 and neuron-specific enolase, in rat glial cells. J. Mol. Med. 1997; 75(9): 653-63.
  76. Lin R.S., Matesic D.F. Immunohistochemical demonstration of neuron-specific enolase and microtube-associated protein 2 in reactive astrocytes after injury in the adult forebrain. Neurosci. 1994; 60(1): 11-6.
  77. Wiedenmann В., Franke W.W. Identification and localization of synaptophysin, an integral membrane glicoprotein of M 38000 characteristic of presynaptic vesicles. Cell. 1985; (41): 1017-28.
  78. Jahn R., Schiebler W., Ouimet C, Greengard P. A 38000-dalton membrane protein (p38) present in synaptic vesicles. Proc. Natl. Acad. Sci. USA. 1985; 82(12): 4137-41.
  79. Wenisch S., Trinkaus K., Hild A. et al. Immunochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation. Bone. 2006; 38(6): 911-21.
  80. Roudenok V., Kuhnel W. The development of synaptophysin immunoreactivity in the human sympathetic ganglia. Ann. Anat. 2001; 183(4): 345-51.
  81. Nag T.S., Wadhwa S. Differential expression of syntaxin-1 and synaptophysin in the developing and adult human retina. J. Biosci. 2001; 26(2): 179-91.
  82. Glantz L.A., Gilmore J.H., Hamer R.M. et al. Synaptophisin and postsynaptoptic density protein 95 in the human prefrontal cortex from mid-gestation into early adulthood. Neurosci. 2007; 149(3): 582-91.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2010 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies