Artificial chromosomes for gene therapy and tissue replacement

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

For more than 20 years artificial chromosomes (ACs) are considered as a promising alternative to other vector systems, such as viral and transgene. Acs have almost unlimited capacity and can be stably maintained as separate chromosomes, thus, do not carry the risk of insertional mutagenesis. However, until recently, Acs have not widely spread due to the uncertainty of their composition and lack of. The situation has changed recently, when the method of de novo construction of ACs, based on defined DNA sequences, was suggested. The review is focused on the most advanced types of ACs and their perspectives in tissue replacement and gene therapy of human diseases.

Full Text

Restricted Access

About the authors

M. Likovykh

Institute of Cytology of RAS, Saint-Petersburg

N. Kouprina

National Cancer Institute, Bethesda, USA

V. Larionov

National Cancer Institute, Bethesda, USA

A. Tomilin

Institute of Cytology of RAS, Saint-Petersburg

References

  1. Katoh M., Ayabe F., Norikane S. et al. Construction of a novel human artificial chromosome vector for gene delivery. Biochemical and biophysical research communications 2004; 321(2): 280-90.
  2. Kakeda M., Nagata K., Osawa K. et al. A new chromosome 14-based human artificial chromosome (HAC) vector system for efficient transgene expression in human primary cells. Biochemical and biophysical research communications 2011; 415(3): 439-44.
  3. Harrington J.J., Van Bokkelen G., Mays R.W. et al. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nature genetics 1997; 15(4): 345-55.
  4. Ikeno M., Grimes B., Okazaki T. et al. Construction of YAC- based mammalian artificial chromosomes. Nature biotechnology 1998; 16(5): 431-9.
  5. Guiducci C., Ascenzioni F., Auriche C. et al. Use of a human minichromosome as a cloning and expression vector for mammalian cells. Human molecular genetics 1999; 8(8): 1417-24.
  6. Ebersole T.A., Ross A., Clark E. et al. Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats. Human molecular genetics 2000; 9(11): 1623-31.
  7. Grimes B.R., Schindelhauer D., McGill N.I. et al. Stable gene expression from a mammalian artificial chromosome. EMBO reports 2001; 2(10): 910-4.
  8. Mejia J.E., Alazami A., Willmott A. et al. Efficiency of de novo centromere formation in human artificial chromosomes. Genomics 2002; 79(3): 297-304.
  9. Kouprina N., Ebersole T., Koriabine M. et al. Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes. Nucleic acids research 2003; 31(3): 922-34.
  10. Basu J., Stromberg G., Compitello G. et al. Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays. Nucleic acids research 2005; 33(2): 587-96.
  11. Basu J., Compitello G., Stromberg G. et al. Efficient assembly of de novo human artificial chromosomes from large genomic loci. BMC biotechnology 2005; 5: 21.
  12. Kotzamanis G., Cheung W., Abdulrazzak H. et al. Construction of human artificial chromosome vectors by recombineering. Gene 2005. 351: 29-38.
  13. Moralli D., Simpson K.M., Wade-Martins R. et al. A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors. EMBO reports 2006; 7(9): 911-8.
  14. Ohzeki J., Bergmann J.H., Kouprina N. et al. Breaking the HAC Barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. The EMBO journal 2012; 31(10): 2391-402.
  15. Dafhnis-Calas F., Xu Z., Haines S. et al. Iterative in vivo assembly of large and complex transgenes by combining the activities of phiC31 integrase and Cre recombinase. Nucleic acids research 2005; 33(22): e189.
  16. Ren X., Katoh M., Hoshiya H. et al. A novel human artificial chromosome vector provides effective cell lineage-specific transgene expression in human mesenchymal stem cells. Stem cells 2005; 23(10): 1608-16.
  17. Kazuki Y., Hoshiya H., Kai Y. et al. Correction of a genetic defect in multipotent germline stem cells using a human artificial chromosome. Gene therapy 2008; 15(8): 617-24.
  18. lida Y., Kim J.H., Kazuki Y. et al. Human artificial chromosome with a conditional centromere for gene delivery and gene expression. DNA research 2010; 17(5): 293-301.
  19. Kakeda M., Hiratsuka M., Nagata K. et al. Human artificial chromosome (HAC) vector provides long-term therapeutic transgene expression in normal human primary fibroblasts. Gene therapy 2005; 12(10): 852-6.
  20. Kazuki Y., Hiratsuka M., Takiguchi M. et al. Complete genetic correction of ips cells from Duchenne muscular dystrophy. Molecular therapy: the journal of the American Society of Gene Therapy 2010; 18(2): 386-93.
  21. Ebersole T., Okamoto Y., Noskov V.N. et al. Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation. Nucleic acids research 2005; 33(15): e130.
  22. Kim J.H., Kononenko A., Erliandri I., et al. Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells. Proceedings of the National Academy of Sciences of the United States of America 2011; 108(50): 20048-53.
  23. Breman A.M., Steiner C.M., Slee R.B. et al. Input DNA ratio determines copy number of the 33 kb Factor IX gene on de novo human artificial chromosomes. Molecular therapy: the journal of the American Society of Gene Therapy 2008; 16(2): 315-23.
  24. Alazami A.M., Mejia J.E., Monaco Z.L. Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable. Genomics 2004; 83(5): 844-51.
  25. Moralli D., Chan D.Y., Jefferson A. et al. HAC stability in murine cells is influenced by nuclear localization and chromatin organization. BMC cell biology 2009; 10: 18.
  26. Fournier R.E., Ruddle F.H. Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proceedings of the National Academy of Sciences of the United States of America 1977; 74(1): 319-23.
  27. Koi M., Shimizu M., Morita H. et al. Construction of mouse A9 clones containing a single human chromosome tagged with neomycin- resistance gene via microcell fusion. Japanese journal of cancer research: Gann 1989; 80(5): 413-8.
  28. Yamaguchi S.R., Katoh X., Miyata M. et al. A new method of microcell-mediated transfer of human artificial chromosome using a hemagglutinating virus of Japan envelope. Chromosome science 2006; 9(2): 9.
  29. Katoh M., Kazuki Y., Kazuki K. et al. Exploitation of the interaction of measles virus fusogenic envelope proteins with the surface receptor CD46 on human cells for microcell-mediated chromosome transfer. BMC biotechnology 2010; 10: 37.
  30. de Jong G., Telenius A., Vanderbyl S. et al. Efficient in-vitro transfer of a 60-Mb mammalian artificial chromosome into murine and hamster cells using cationic lipids and dendrimers. Chromosome research 2001; 9(6): 475-85.
  31. Suzuki N., Itou T., Hasegawa Y. et al. Cell to cell transfer of the chromatin-packaged human beta-globin gene cluster. Nucleic acids research 2010; 38(5): e33.
  32. Larionov V., Kouprina N., Graves J. et al. Specific cloning of human DNA as yeast artificial chromosomes by transformation- associated recombination. Proceedings of the National Academy of Sciences of the United States of America 1996; 93(1): 491-6.
  33. Kouprina N., Larionov V. TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution. Nature reviews Genetics 2006; 7(10): 805-12.
  34. Kouprina N., Larionov V. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nature protocols 2008; 3(3): 371-7.
  35. Ayabe F., Katoh M., Inoue T. et al. A novel expression system for genomic DNA loci using a human artificial chromosome vector with transformation-associated recombination cloning. Journal of human genetics 2005; 50(11): 592-9.
  36. Kuroiwa Y., Kasinathan P., Choi Y.J. et al. Cloned transchromosomic calves producing human immunoglobulin. Nature biotechnology 2002; 20(9): 889-94.
  37. Kuroiwa Y., Kasinathan P., Sathiyaseelan T. et al. Antigen- specific human polyclonal antibodies from hyperimmunized cattle. Nature biotechnology 2009; 27(2): 173-81.
  38. Ikeno M., Inagaki H., Nagata K. et al. Generation of human artificial chromosomes expressing naturally controlled guanosine triphosphate cyclohydrolase I gene. Genes to cells: devoted to molecular & cellular mechanisms 2002; 7(10): 1021-32.
  39. Suzuki N., Nishii K., Okazaki T. et al. Human artificial chromosomes constructed using the bottom-up strategy are stably maintained in mitosis and efficiently transmissible to progeny mice. The Journal of biological chemistry 2006; 281(36): 26615-23.
  40. Ito M., Ikeno M., Nagata H. et al. Treatment of nonalbumin rats by transplantation of immortalized hepatocytes using artificial human chromosome. Transplantation proceedings 2009; 41(1): 422-4.
  41. Voet T., Schoenmakers E., Carpentier S. et al. Controlled transgene dosage and PAC-mediated transgenesis in mice using a chromosomal vector. Genomics 2003; 82(6): 596-605.
  42. Hoshiya H., Kazuki Y., Abe S. et al. A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Molecular therapy: the journal of the American Society of Gene Therapy 2009; 17(2): 309-17.
  43. Yamaguchi S., Kazuki Y., Nakayama Y. et al. A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector. PloS one 2011; 6(2): e17267.
  44. Takahashi Y., Tsuji S., Kazuki Y. et al. Development of evaluation system for bioactive substances using human artificial chromosome- mediated osteocalcin gene expression. Journal of biochemistry 2010; 148(1): 29-34.
  45. Janssen A., Kops G.J., Medema R.H. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proceedings of the National Academy of Sciences of the United States of America 2009; 106(45): 19108-13.
  46. Colombo R., Moll J. Destabilizing aneuploidy by targeting cell cycle and mitotic checkpoint proteins in cancer cells. Current drug targets 2010; 11(10): 1325-35.
  47. Pao W., Girard N. New driver mutations in non-small-cell lung cancer. The lancet oncology 2011; 12(2): 175-80.
  48. Stirling P.C., Bloom M.S., Solanki-Patil T. et al. The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS genetics 2011; 7(4): e1002057.
  49. Cardinale S., Bergmann J.H., Kelly D. et al. Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Molecular biology of the cell 2009; 20(19): 4194-204.
  50. Bergmann J.H., Rodriguez M.G., Martins N.M. et al. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO 2011; 30(2): 328-40.
  51. Bergmann J.H., Jakubsche J.N., Martins N.M. et al. Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. Cell Science 2012; 125(Pt 2): 411-21.
  52. Bergmann J.H., Martins N.M., Larionov V. et al. HACking the centromere chromatin code: insights from human artificial chromosomes. Chromosome research 2012; 20(5): 505-19.
  53. Takahashi K., Tanabe K., Ohnuki M. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
  54. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
  55. Yu J., Vodyanik M.A., Smuga-Otto K. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies