Nonwoven polycaprolactone scaffolds for tissue engineering: the choice of the structure and the method of cell seeding



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Nonwoven polycaprolactone materials produced by electrospinning are perspective internal prosthetic implants. Seeding these implants with multipotent mesenchymal stromal cells stimulates the replacement of the prosthesis with recipient's own connective tissue. Electrospinning method was used for producing polycap-rolactone matrices differing in thickness, pore diameter, fiber size, and biomechanical properties. Labeled cells were seeded on scaffolds in three ways: (1) static, (2) dynamic, and (3) directed flow of the cell suspension generated by capillary action. Cell distribution on the surface and the interior of the scaffolds was studied; the metabolic activity of cells was measured by MTT assay. Static seeding method yielded fully confluence of cells covered the entire scaffold surface, but the cells were located primarily in the upper third of the matrix. Dynamic method proved to be effective only for scaffolds of thickness greater than 500 microns, irrespective of the pore diameter. The third method was effective only for scaffolds with the pore diameter of 20-30 microns, regardless of the material thickness. Resorbable nonwoven polycaprolactone electrospun materials have appropriate biomechanical properties and similar to native tissue matrix structures for internal prosthesis. The choice of the most effective cell seeding method depends on the spatial characteristics - the material thickness, pore diameter, and fibers size, which are determined by the electrospinning conditions.

Full Text

Restricted Access

About the authors

I. V Arutyunyan

Research Center for Obstetrics, Gynecology and Perinatology; Scientific Research Institute of Human Morphology

Moscow, Russia

T. Kh Tenchurin

Kurchatov's complex of NBICS-technologies, National Research Centre “Kurchatov Institute

Moscow, Russia

E. Y Kananykhina

Research Center for Obstetrics, Gynecology and Perinatology; Scientific Research Institute of Human Morphology

Moscow, Russia

V. P Chernikov

Scientific Research Institute of Human Morphology

Moscow, Russia

O. A Vasyukova

Scientific Research Institute of Human Morphology

Moscow, Russia

A. V Elchaninov

Research Center for Obstetrics, Gynecology and Perinatology; N.I. Pirogov Russian National Research Medical University

Moscow, Russia

A. V Makarov

Research Center for Obstetrics, Gynecology and Perinatology; Scientific Research Institute of Human Morphology

Moscow, Russia

A. A Korshunov

Research Center for Obstetrics, Gynecology and Perinatology

Moscow, Russia

A. A Burov

Research Center for Obstetrics, Gynecology and Perinatology

Moscow, Russia

Y. L Podurovskaya

Research Center for Obstetrics, Gynecology and Perinatology

Moscow, Russia

V. D Chuprynin

Research Center for Obstetrics, Gynecology and Perinatology

Moscow, Russia

E. V Uvarova

Research Center for Obstetrics, Gynecology and Perinatology

Moscow, Russia

D. N Degtyarev

Research Center for Obstetrics, Gynecology and Perinatology

Moscow, Russia

A. D Shepelev

Kurchatov's complex of NBICS-technologies, National Research Centre “Kurchatov Institute”

Moscow, Russia

V. G Mamagulashvili

Kurchatov's complex of NBICS-technologies, National Research Centre “Kurchatov Institute

Moscow, Russia

R. A Kamyshinskiy

Kurchatov's complex of NBICS-technologies, National Research Centre “Kurchatov Institute

Moscow, Russia

S. V Krasheninnikov

Kurchatov's complex of NBICS-technologies, National Research Centre “Kurchatov Institute

Moscow, Russia

S. N Chvalun

Kurchatov's complex of NBICS-technologies, National Research Centre “Kurchatov Institute

Moscow, Russia

T. Kh Fatkhudinov

Research Center for Obstetrics, Gynecology and Perinatology; Peoples' Friendship University of Russia

Moscow, Russia

References

  1. Basile F., Biondi A., Donati M. Surgical approach to abdominal wall defects: history and new trends. Int. J. Surg. 2013; 11 Suppl 1: S20-3.
  2. Bilsel Y., Abci I. The search for ideal hernia repair; mesh materials and types. Int. J. Surg. 2012; 10(6): 317-21.
  3. Lukasiewicz A., Drewa T. Synthetic implants in hernia surgery. Adv. Clin. Exp. Med. 2014; 23(1): 135-42.
  4. Romao R.L., Nasr A., Chiu P.P. et al. What is the best prosthetic material for patch repair of congenital diaphragmatic hernia? Comparison and meta-analysis of porcine small intestinal submucosa and polytetrafluoroethylene. J. Pediatr. Surg. 2012; 47(8): 1496-500.
  5. Kissane N.A., Itani K.M. A decade of ventral incisional hernia repairs with biologic acellular dermal matrix: what have we learned? Plast. Reconstr. Surg. 2012; 130(5 Suppl 2): 194S-202S.
  6. Patel K.M., Bhanot P. Complications of acellular dermal matrices in abdominal wall reconstruction. Plast. Reconstr. Surg. 2012; 130(5 Suppl 2): 216S-24S.
  7. Ferzoco S.J. A systematic review of outcomes following repair of complex ventral incisional hernias with biologic mesh. Int. Surg. 2013; 98(4): 399-408.
  8. Rim N.G., Shin C.S., Shin H. Current approaches to electrospun nanofibers for tissue engineering. Biomed. Mater. 2013; 8(1): 014102.
  9. Ebersole G.C., Buettmann E.G., MacEwan M.R. et al. Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications. Surg. Endosc. 2012; 26(10): 2717-28.
  10. Woodruff M.A., Hutmacher D.W. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 2010; 35: 1217-56.
  11. Brugmans M.M., Soekhradj-Soechit R.S., van Geemen D. et al. Superior tissue evolution in slow-degrading scaffolds for valvular tissue engineering. Tissue Eng. Part A 2016; 22(1-2): 123-32.
  12. Севастьянова В.В., Елгудин Я.А., Глушкова Т.В. и др. Использование протезов из поликапролактона для сосудов малого диаметра. Ангиология и сосудистая хирургия 2015; 21(1): 44-53.
  13. Попова И.В., Степанова А.О., Сергеевичев Д.С. и др. Сравнительное исследование трех типов протезов, изготовленных методом электроспиннинга в эксперименте in vitro и in vivo. Патология кровообращения и кардиохирургия 2015; 19(4): 63-71.
  14. Xu T., Miszuk J.M., Zhao Y. et al. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv. Health. Mater. 2015; 4(15): 2238-46.
  15. Ghanavati Z., Neisi N., Bayati V. et al. The influence of substrate topography and biomaterial substance on skin wound healing. Anat. Cell Biol. 2015; 48(4): 251-7.
  16. Farrugia B.L., Brown T.D., Upton Z. et al. Dermal fibroblast infiltration of poly(e-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication 2013; 5(2): 025001.
  17. Ousema P.H., Moutos F.T., Estes B.T. et al. The inhibition by interleukin 1 of MSC chondrogenesis and the development of biomechanical properties in biomimetic 3D woven PCL scaffolds. Biomaterials 2012; 33(35): 8967-74.
  18. Ghanavati Z., Orazizadeh M., Bayati V. et al. Characterization of a three-dimensional organotypic co-culture skin model for epidermal differentiation of rat adipose-derived stem cells. Cell J. 2016 Fall; 18(3): 289-301.
  19. Bahrami H., Keshel S.H., Chari A.J. et al. Human unrestricted somatic stem cells loaded in nanofibrous PCL scaffold and their healing effect on skin defects. Artif. Cells Nanomed. Biotechnol. 2016; 44(6): 1556-60.
  20. Iyyanki T.S., Dunne L.W., Zhang Q. et al. Adipose-derived stemcell-seeded non-cross-linked porcine acellular dermal matrix increases cellular infiltration, vascular infiltration, and mechanical strength of ventral hernia repairs. Tissue Eng. Part A 2015; 21(3-4): 475-85.
  21. Majumder A., Gao Y., Sadava E.E. et al. Cell-coating affects tissue integration of synthetic and biologic meshes: comparative analysis of the onlay and underlay mesh positioning in rats. Surg. Endosc. 2016; 30(10): 4445-53.
  22. Hanson S., D'Souza R.N., Hematti P. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering. Tissue Eng. Part A 2014; 20(15-16): 2162-8.
  23. Gao Y., Krpata D.M., Criss C.N. et al. Effects of mesenchymal stem cell and fibroblast coating on immunogenic potential of prosthetic meshes in vitro. Surg. Endosc. 2014; 28(8): 2357-67.
  24. Mattar P., Bieback K. Comparing the immunomodulatory properties of bone marrow, adipose tissue, and birth-associated tissue mesenchymal stromal cells. Front. Immunol. 2015; 6: 560.
  25. El Omar R., Beroud J., Stoltz J.F. et al. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng. Part B Rev. 2014; 20(5): 523-44.
  26. Nagamura-Inoue T., He H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J. Stem Cells 2014; 6(2): 195-202.
  27. Lanza R., Langer R., Vacanti J.P., editors. Principles of tissue engineering, 4th ed. London: Elsevier Inc.; 2014.
  28. Baker S.R., Banerjee S., Bonin K. et al. Determining the mechanical properties of electrospun poly-e-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Mater. Sci. Eng. C Mater. Biol. Appl. 2016; 59: 203-12.
  29. Сытина Е.В., Тенчурин Т.Х., Рудяк С.Г. и др. Сравнительная оценка биосовместимости полимерных матриксов, полученных путем электроформования, и их использование для создания объемных дермальных эквивалентов. Молекулярная медицина 2014; 6: 38-47.
  30. Малкин А.Я., Аскадский А.А., Коврига В.В. Методы измерения механических свойств полимеров. М.: Химия; 1978.
  31. Арутюнян И.В., Макаров А.В., Ельчанинов А.В. и др. Мультипотентные мезенхимальные стромальные клетки пупочного канатика: биологические свойства и клиническое применение. Гены и клетки 2015; 10(2): 30-8.
  32. Koontz A.R., Kimberly R.C. Further experimental work on prostheses for hernia repair. Surg. Gynecol. Obstet. 1959; 109: 321.
  33. Hernandez-Gascon B., Pena E., Melero H. et al. Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall. Acta Biomater. 2011; 7(11): 3905-13.
  34. Ngo M.D., Aberman H.M., Hawes M.L. et al. Evaluation of human acellular dermis versus porcine acellular dermis in an in vivo model for incisional hernia repair. Cell Tissue Bank 2011; 12(2): 135-45.
  35. Shi L., Ronfard V. Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review. Int. J. Burns Trauma 2013; 3(4): 173-9.
  36. Misra S., Raj P.K., Tarr S.M. et al. Results of AlloDerm use in abdominal hernia repair. Hernia 2008; 12(3): 247-50.
  37. Brown C.N., Finch J.G. Which mesh for hernia repair? Ann. R. Coll. Surg. Engl. 2010; 92(4): 272-8.
  38. Насрединов А.С., Лаврешин А.В. Тканевая инженерия кровеносных сосудов: способы совмещения клеток и носителя. Гены и клетки 2014; 1: 23-34.
  39. Lv X.G., Feng C., Fu Q. et al. Comparative study of different seeding methods based on a multilayer SIS scaffold: Which is the optimal procedure for urethral tissue engineering? J. Biomed. Mater. Res. B Appl. Biomater. 2016; 104(6): 1098-108.
  40. Yamanaka K., Yamamoto K., Sakai Y. et al. Seeding of mesenchymal stem cells into inner part of interconnected porous biodegradable scaffold by a new method with a filter paper. Dent. Mater. J. 2015; 34(1): 78-85.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies