Decellularized rat heart matrix as a basis for creation of tissue engineered heart

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Development of bioengineered scaffolds of internal organs is one of the priority areas of tissue engineering. Decellularization allows to obtain biological (natural) scaffolds while preserving extracellular matrix and three-dimensional structure of organs. The primary goals of the present research were to investigate pathological characteristics of the decellularized rat heart scaffold and evaluate adhesion and viability of multipotent mesenchymal stromal cells (MMSC) during recellularization. Rat hearts were decellularized using a modified detergent-enzymatic method including sodium deoxycholate and DNAse. The results of morphological studies have confirmed the safety of extracellular matrix proteins and patency of the coronary vessels. Mechanical testing of decellularized and native samples of rat heart showed an increase of mechanical properties of the matrix during decellularization. During the conducted experiments on recellularization of obtained scaffold has been shown that the extracellular matrix was not toxic for MMSC which were viable and maintained their metabolic activity during prolonged cultivation on the scaffold.

Full Text

Restricted Access

About the authors

A. S Sotnichenko

Kuban State Medical University

Krasnodar

E. A Gubareva

Kuban State Medical University

Krasnodar

I. V Gilevich

Kuban State Medical University

Krasnodar

E. V Kuevda

Kuban State Medical University

Krasnodar

S. V Krasheninnikov

NRC «Kurchatov Institute»

Moscow

T. E Grigoriev

NRC «Kurchatov Institute»

Moscow

S. N Chvalun

NRC «Kurchatov Institute»

Moscow

P. Macchiarini

Kuban State Medical University; Karolinska Institutet, Stockholm

Sweden

References

  1. ВОЗ. 10 ведущих причин смерти в мире. http://www.who.int/ mediacentre/factsheets/fs310/ru/
  2. World Health Statistics. http://www.who.int/gho/publications/ world_health_statistics
  3. GKT1 Activity and Practices. http://www.who.int/ transplantation/gkt/statistics/en/
  4. Fuchs J.R., Nasseri B.A., Vacanti J.P. Tissue engineering: a 21st century solution to surgical reconstruction. Ann. Thorac. Surg. 2001; 72: 577-91.
  5. Murphy S.V., Atala A. Organ engineering - combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. Bioessays. 2012; 35: 163-72.
  6. Taylor D.A. From stem cells and cadaveric matrix to engineered organs. Current Opinion in Biotechnology. 2009; 20: 598-605.
  7. McIntire L.V., Greisler H.P., Griffith L. et al. WTEC Panel Report on Tissue Engineering Research. Final report. International Technology Research Institute. Baltimore, 2002.
  8. Langer R., Vacanti J.P. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Science1993; 260: 920-6.
  9. Skalak R., Fox C., editors. NSF Workshop, UCLA Symposia on Molecular and Cellular Biology. 1988.
  10. Amulya S. Tissue engineering: present concepts and strategies. J. Indian Assoc. Ped. Surg. 2005; 10: 14-9.
  11. Atala A. Tissue engineering, stem cells and cloning: current concepts and changing trends Expert opinion on biological therapy. 2005; 5: 879.
  12. Badylak S.F., Taylor D., Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds, Annu. Rev. Biomed. 2011; 13: 27-53.
  13. Exposito J.Y., D'Alessio M., Solursh M. et al. Sea urchin collagen evolutionarily homologous to vertebrate pro-alpha 2(I) collagen. J. Biol. Chem. 1992; 267(22): 15559-62.
  14. Bernard M.P., Chu M.L., Myers J.C. et al. Nucleotide sequences of complementary deoxyribonucleic acids for the pro alpha 1 chain of human type I procollagen. Statistical evaluation of structures that are conserved during evolution. Biochemistry 1983; 22(22): 5213-23.
  15. Bernard M.P., Myers J.C., Chu M.L. et al. Structure of a cDNA for the pro alpha 2 chain of human type I procollagen. Comparison with chick cDNA for pro alpha 2(I) identifies structurally conserved features of the protein and the gene. Biochemistry 1983; 22(5): 1139-45
  16. Badylak S.F. The extracellular matrix as a biologic scaffold material. Biomaterials 2007; 28: 3587-93.
  17. Gilbert T.W., Stewart-Akers A.M., Simmons-Byrd A. et al. Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J. Bone Joint Surg. 2007; 89(3): 621-30.
  18. Dejardin L.M., Arnoczky S.P., Ewers B.J. et al. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa. Histologic and mechanical evaluation in dogs. Amer. J. Sports Med. 2001; 29(2): 175-84.
  19. Gilbert T.W., Nieponice A., Spievack A.R. et al. Repair of the thoracic wall with an extracellular matrix scaffold in a canine model. J. Surg. Res. 2008; 147(1): 61-7. образовательных учреждениях высшего профессионального образования от 19 октября 2011 г. №11. G34.31.0065. Работа выполнена на оборудовании Ведущего центра трансляционной регенеративной медицины (ACTREM) Каролинского Института (Швеция).
  20. MacLeod T.M., Sarathchandra P., Williams G. et al. Evaluation of a porcine origin acellular dermal matrix and small intestinal submucosa as dermal replacements in preventing secondary skin graft contraction. Burns 2004; 30(5): 431-7.
  21. Wainwright D.J. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 1995; 21(4): 243-8.
  22. Ott H.C., Matthiesen T.S, Goh S.K. et al. Perfusion decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat. Med. 2008; 14: 213-21.
  23. Macchiarini P., Jungebluth P., Go T. et al. Clinical transplantation of a tissue-engineered airway. Lancet 2008; 372: 2023-30.
  24. Montoya C.V., McFetridge P.S. Preparation of ex vivo based biomaterials using convective flow decellularization. Tissue Engineering: Part C, Methods. 2009; 15(2): 191-200.
  25. Omae H., Zhao C., Sun Y.L. et al. Multilayer tendon slices seeded with bone marrow stromal cells: a novel composite for tendon engineering. J. Orthop Res. 2009; 27(7): 937-42
  26. Ozeki M., Narita Y., Kagami H. et al. Evaluation of decellularized esophagus as a scaffold for cultured esophageal epithelial cells. J. Biomed. Mat. Res., Part A. 2006; 79(4): 771-8.
  27. Sellaro T.L., Ravindra A.K., Stolz D.B. et al. Maintenance of hepatic sinusoidal endothelial cell phenotype in vitro using organ-specific extracellular matrix scaffolds. Tissue Eng. 2007; 13(9): 2301-10.
  28. Ott H.C, Taylor D. Decellularization and recellularization of organs and tissues. US patent application 20090202977. 2009 Aug 13.
  29. Wainwright J.M., Czajka C.A., Patel U.B. et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue engineering: Part C; 2010; 16(3): 525-32.
  30. Губарева Е.А., Сотниченко А.С., Гилевич И.В. и др. Морфологическая оценка качества децеллюляризации сердца и диафрагмы крыс. Клеточная трансплантология и тканевая инженерия 2012; VII (4): 20-7.
  31. Rieder E., M.-T. Kasimir, G. Silberhumer et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thor. Cardiovasc. Surg. 2004; 127(2): 399-405.
  32. Guo-feng L., Zhi-juan H.E., Da-ping Y.et al. Decellularized aorta of fetal pigs as a potential scaffold for small diameter tissue engineered vascular graft. Chin. Med. J. 2008; 121(15): 1398-406.
  33. Taylor D. From stem cells and cadaveric matrix to engineered organs. Current Opinion in Biotechnology 2009; 20:598-605
  34. Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011; 32: 3233-43.
  35. Gilbert T.W. Strategies for tissue and organ decellularization. J. Cell Biochem. 2012; 113(7): 2217-22.
  36. R.N. Haward. The application of non-gaussian chain statistics to ultralow density polyethylenes and other thermoplastic polymers. Polymer 1999; 40: 5821-32.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies