Plasticity of bone marrow-derived stromal cells at grafting onto neural tissue after ischemic injury in vitro



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Bone marrow-derived multipotent mesenchymal stromal cells (BM-MMSCs) are able to confer beneficial effects after transplantation into neural tissue with ischemic injury. This effect is probably caused by the release of trophic factors, although the possibilities of replacement of dead neural cells by BM-MMSCs are not excluded. The aim of this study was to identify the ability of BM-MMScs to differentiate into cells of the nervous tissues and their neuroprotective effect in direct contact with nervous tissue damaged by ischemia Therefore, we investigated this interaction by in vitro model of organotypic hippocampal tissue to avoid affecting the immunological processes in the conditions after transplantation in vivo. Ischemic injury induced by oxygen-glucose deprivation The potential of differentiation of transplanted multipotent mesenchymal bone marrow stromal cells to neural direction was assessed for 14 days after the ischemic injury. At the 7 th day after the oxygen-glucose deprivation and transplantation the multipotent mesenchymal bone marrow stromal cells differentiated into microglial cells, and on the 14th day - as in microglial cells and in mature oligodendrocytes These findings suggest that the transplanted stem cells respond to signals from the microenvironment of the injured tissue of the recipient, which in turn may trigger and regulate cell differentiation as well as to determine the direction of migration

Full Text

Restricted Access

About the authors

O. A Rybachuk

Bogomoletz Institute of Physiology NAN Ukraine; State Key Laboratory of Molecular and Cell Biology; State Institute of Genetic and Regenerative Medicine NAMS Ukraine

Email: oks-ribachuk@yandex.ru

V. M Kyryk

State Institute of Genetic and Regenerative Medicine NAMS Ukraine

P. A Poberezhnyi

State Institute of Genetic and Regenerative Medicine NAMS Ukraine

G. M Butenko

State Institute of Genetic and Regenerative Medicine NAMS Ukraine

T. A Pivneva

Bogomoletz Institute of Physiology NAN Ukraine; State Key Laboratory of Molecular and Cell Biology; State Institute of Genetic and Regenerative Medicine NAMS Ukraine

References

  1. Dunnett S. , Rosser A. clinical translation of cell transplantation in the brain. curr. Opin. Organ Transplant. 2011; 16(6): 632-9
  2. Miller R., Bai L. Translating stem cell therapies to the clinic. Neurosci Lett. 2012; 519(2): 87-92.
  3. Зозуля Ю. , Лисяний Н. Нейрогенная дифференцировка стволовых клеток. Киев: Экспресс-Полиграф; 2005.
  4. Сухих Г., Малайцев В., Богданова И. Стволовые клетки. От фундаментальных исследований к клинике. Вест. МЕДСИ 2008; 1(1): 38-44.
  5. Zemel'ko V., Kozhukharova I., Kovaleva Z. et. al. BDNF secretion in human mesenchymal stem cells isolated from bone marrow, endometrium and adipose tissue. Tsitologiia 2014; 56(3): 204-11.
  6. Gage F. Mammalian neural stem cells, Science 2000; 287(5457): 1427-38.
  7. Alexanian A. Epigenetic modifiers promote efficient generation of neural-like cells from bone marrow-derived mesenchymal cells grown in neural environment. J. cell Biochem. 2007; 100(2): 362-71.
  8. Breyer A., Estharabadi N., Oki M. et. al. Multipotent adult progenitor cell isolation and culture procedures. Exp. Hematol. 2006; 34: 1596-601.
  9. Khaldoyanidi S., Pines T. Directing stem cell homing. cell Stem cell 2008; 2(3): 198-200.
  10. Kohyama J., Abe H., Shimazaki T. et al. Brain from bone: Efficient «meta-differentiation» of marrow stroma-derived mature osteoblasts to neurons with noggin or a demethylating agent Differentiation 2001; 68(4/5): 235-44.
  11. Wang J. , Wan H. Mesenchymal stromal cells as a therapeutic treatment for ischemic stroke Neuroscience bull 2014; 30: 524-35.
  12. Kuroda S. , Houkin K. Translational challenge for bone marrow stromal cell therapy after stroke Front Neurol Neuroscience 2013; 32: 62-8.
  13. Kim Y. , Noh M., cho K. Hypoxia/Reoxygenation-preconditioned human bone marrow-derived mesenchymal stromal cells rescue ischemic rat cortical neurons by enhancing trophic factor release Mol Neurobiol. 2014; 8: 113-26.
  14. Zilka N. , Zilkova M. , Kazmerova Z. et al. Mesenchymal stem cells rescue the Alzheimer's disease cell model from cell death induced by misfolded truncated tau. Neurosci. 2011; 13(193): 330-7.
  15. Dey N. , Bombard M. , Roland B. et al. Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease. Behav. Brain Res. 2010; 214(2): 193-200.
  16. Kin T. , Fortino V. , Pelez D. Progress of mesenchymal stem cell therapy for neural and retinal diseases. World J. Stem cells 2014; 6: 111-9.
  17. Popa-Wagner A., Buga A., Doeppner T. Stem cell therapies in preclinical models of stroke associated with aging Front cell Neurosci. 2014; 8: 347-57.
  18. Ikegame Y. , Yamashita K. , Nakashima S. Fate of graft cells: what should be clarified for development of mesenchymal stem cell therapy for ischemic stroke? Front. cell. Neurosci. 2014; 8: 322-30.
  19. Chen J. , Venkat P. , Zacharek A. et al. Neuroprotective therapy for stroke. Neurorestorative therapy for stroke. Front. Hum. Neurosci. 2014; 8: 391-403.
  20. Daviaud N. , Garbayo E., Schiller P. et al. Organotypic cultures as tools for optimizing central nervous system cell therapies Exp Neurol. 2013; 248: 429-40.
  21. Stoppini L. , Buchs P. , Muller D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 1991; 37(2): 173-82.
  22. Lipton P. Ischemic cell death in brain neurons Physiol Rev 1999; 79(4): 1431-568.
  23. Jung Y., Park S., Park J. et. al. Glucose/oxygen deprivation induces the alteration of synapsin I and phosphosynapsin Brain Res 2004; 996(1): 47-54.
  24. Li Y. , Chopp M. , Jiang N. et al. In situ detection of DNA fragmentation after focal cerebral ischemia in mice Mol Brain Res 1995; 28(1): 164-8.
  25. Strasser U., Fischer G. Quantitative measurement of neuronal degeneration in organotypic hippocampal cultures after combined oxygen/glucose deprivation. J. Neurosci. Methods 1995; 57(2): 177-86.
  26. Brana C., Benham C., Sundstrom L. Calpain activation and inhibition in organotypic rat hippocampal slice cultures deprived of oxygen and glucose. Eur. J. Neurosci. 1999; 11(7): 2375-84.
  27. Cimarosti H. , Rodnight R. , Tavares A. et al. An investigation of the neuroprotective effect of lithium in organotypic slice cultures of rat hippocampus exposed to oxygen and glucose deprivation Neurosci Lett. 2001; 315(1-2): 33-6.
  28. Graulich J. , Hoffmann U. , Maier R. et al. Acute neuronal injury after hypoxia is influenced by the reoxygenation mode in juvenile hippocampal slice cultures. Brain Res. Dev. Brain Res. 2002; 137(1): 35-42
  29. Gwag B. , Lobner D. , Koh J. et al. Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro. Neurosci. 1995; 68(3): 615-9.
  30. Pringle A., Schmidt W., Deans J. et al. 7-Hydroxylated epiandrosterone (7-OH-EPIA) reduces ischaemia-induced neuronal damage both in vivo and in vitro Eur J Neurosci 2003; 18(1): 117-214.
  31. Jourdain P., Nikonenko I., Alberi S. et. al. Remodeling of hippocampal synaptic networks by a brief anoxia-hypoglycemia. J. Neurosci. 2002; 22(8): 3108-16.
  32. Crepel V., Hammond C., Krnjevi K. et al. Anoxia-induced LTP of isolated NMDA receptor-mediated synaptic responses. J. Neurophysiol. 1993; 69(5): 1774-8.
  33. Melani R. , Rebaudo R. , Balestrino M. et al. Involvement of S-100 protein in anoxic long-term potentiation. Brain Res. 1999; 840(1-2): 171-4.
  34. Bancila V., Nikonenko I., Dunant Y. et. al. Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampus. J. Neurochem. 2004; 90(5): 1243-50.
  35. Nikonenko I. , Jourdain P., Muller D. Presynaptic remodeling contributes to activity-dependent synaptogenesis. J. Neurosci. 2003; 23(24): 8498-505.
  36. Harting M., Jimenez F., Cox C. Isolation of mesenchymal stem Cells (MSCs) from green fluorescent protein positive (GFP + ) transgenic rodents: the grass is not always green(er). Stem Cells Dev. 2009; 18(1): 127-35.
  37. Ooi Y. , Ramasamy R. , Vidyadaran S. Mouse bone marrow mesenchymal stem cells acquire CD45-CD106+ immunophenotype only at later passages. Med. J. Malaysia 2008; 63(Suppl A): 65-6.
  38. Dominici M., Le Blanc K., Mueller I. et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International society for cellular therapy position statement. Cytotherapy 2006; 8(4): 315-7.
  39. Виноградова О. С. Гиппокамп и память. М.: Наука; 1975.
  40. Peeters C., Hoelen D., Groenendaal F. et al. Deferoxamine, allopurinol and oxypurinol are not neuroprotective after oxygen/glucose deprivation in an organotypic hippocampal model, lacking functional endothelial cells. Brain Res. 2003; 963(1-2): 72-80.
  41. Winkelmann E., Charcansky A., Faccioni-Heuser M. An ultrastructural analysis of cellular death in the CA1 field in the rat hippocampus after transient forebrain ischemia followed by 2, 4 and 10 days of reperfusion. Anat. Embryol. (Berl). 2006; 211(5): 423-34.
  42. Kettenmann H., Ransom B. Neuroglia. 2nd ed. Oxford: University Press; 2005.
  43. Bahr B. Long-term hippocampal slices: a model system for investigating synaptic mechanisms and pathologic processes. J. Neurosci. Res. 1995; 42(3): 294-305.
  44. Laake J., Haug F., Wieloch T. et al. A simple in vitro model of ischemia based on hippocampal slice cultures and propidium iodide fluorescence. Brain Res. Protocols 1999; 4: 173-84.
  45. Cho J. , Shin Y., Park J. et. al. Characterization of nestin expression in astrocytes in the rat hippocampal CA1 region following transient forebrain ischemia. Anat. Cell Biol. 2013; 46: 131-40.
  46. Wagner D. C., Scheibe J. , Glocke I. et. al. Object-based analysis of astroglial reaction and astrocyte subtype morphology after ischemic brain injury. Acta Neurobiol. Exp. (Wars) 2013; 73(1): 79-87.
  47. Sukumari-Ramesh S., Alleyne C., Dhandapani K. Astrocyte-specific expression of surviving after intracerebral hemorrhage in mice: a possible role in reactive gliosis? J. Neurotrauma 2012; 19(18): 2798-804.
  48. Kokaia Z., Lindvall O. Neurogenesis after ischemic brain insults. Curr. Opin. Neurobiol. 2003; 13(1): 127-32.
  49. Savitz S. , Rosenbaum D., Dinsmore J. et al. Cell transplantation for stroke. Ann. Neurol. 2002; 52(3): 266-75.
  50. Sarnowska A., Braun H., Sauerzweig S. et al. The neuroprotective effect of bone marrow stem cells is not dependent on direct cell contact with hypoxic injured tissue Exp Neurol 2009; 215(2): 317-27.
  51. Sauerzweig S., Munsch T., Le mann V. et. al. A population of serumdeprivation-induced bone marrow stem cells (SD-BMSC) expresses marker typical for embryonic and neural stem cells. Exp. cell res. 2009; 315: 50-66.
  52. Secco M., Zucconi E. , Vieira N. et al. Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cell 2008; 26(2): 146-50.
  53. Kolf C., Cho E., Tuan R. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res. Ther. 2007; 9(1): 204-14.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies