Development of implantable cell-tissue-engineering designs of auxiliary liver for the treatment of liver failure



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper analyzes the achievements and prospects of creating implantable cell- and tissue-engineering designs (CEDs and TEDs) of auxiliary liver to treat liver failure. Emphasizes the need to maintenance long-term and steady function of implantable CEDs and TEDs at the treatment of liver failure, by forming in them de novo hepatospecific structures and transformation of these structures in the new centers of restorative regeneration of damaged liver. CEDs and TEDs acquire these properties due to inclusion in their designs small-differentiated cells: liverspecific cells (parenchymal and non-parenchymal), cells, committed in hepatoid direction and bone marrow cells, adherent to the biocompatible and biodegradable 3D-material, simulating the properties of the extracellular matrix The article analyzes the advantages, disadvantages and prospects for using the major groups of matrices materials (biological, synthetic,inclusive biopolymer and tissue-specific composite materials, obtained by liver decellularization). Indicates that the biopolymer materials occupy a preferred place among biodegradable scaffolds as have not only biocompatible, but also the properties of biostimulants. Since the production of the TEDs requires the provision of adequate stereotypical distribution of different types of cells in the matrix is paid great attention to the production of micro-scale, medium-scale and large-scale TEDs of auxiliary liver. However, points out that none of the problems of producing TEDs liver (choice of sources and technologies to produce small-differentiated cells, the selection matrix and technology of cell-sowing, the choice of assembly technology TEDs) can not be considered definitively settled

Full Text

Restricted Access

About the authors

N. A Onishchenko

Academican V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs

Y. S Gulay

Academican V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs

M. Y Shagidulin

Academican V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs

A. O Nikolskaya

Academican V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs

Email: allanik64@yandex.ru

L. V Bashkina

Academican V.I. Shumakov Federal Research Center of Transplantology and Artificial Organs

References

  1. Саркисов Д. С. Регенерация и её клиническое значение. М: Изд-во Медицина; 1970
  2. Бабаева А. Г. Регенерация. Факты и перспективы. М.: Изд-во РАМН; 2009.
  3. Igarashi Y., DHoore W., Goebbels R. M. et al. Beta-5 score to evaluate pig islet graft function in a primate pre-clinical model. Xenotransplantation 2010; 17(6): 449-59.
  4. Онищенко Н. А. , Шагидулин М. Ю., Крашенинников М. Е. и др. Повреждения органов и тканей, требующие применения клеточных технологий. В: Пинаев Г. П., Богданова М. С., Кольцова А. М., редакторы Клеточные технологии для регенеративной медицины СПб: Изд-во Политехнического Ун-та; 2011. с. 25-43.
  5. Шумаков В. И., Онищенко Н.А., редакторы Биологические резервы клеток костного мозга и коррекция органных дисфункций. Москва: Лавр; 2009
  6. Booth C., Soker T., Baptista P. et al. Liver bioengineering: current status and future perspectives. World J. Gastroenterology 2012; 18(47): 6926-34.
  7. Люндуп А В , Онищенко Н А , Крашенинников М. Е. и др. О роли синусоидальных клеток печени и клеток костного мозга в обеспечении регенераторной стратегии здоровой и поврежденной печени (Аналитический обзор) Вестник трансплантологии и искусственных органов 2010; XIIt1): 78-85.
  8. Онищенко Н. А. , Люндуп А. В. , Деев Р. В. и др. Синусоидальные клетки печени и клетки костного мозга как компоненты единой функциональной системы регуляции восстановительного морфогенеза в здоровой и поврежденной печени. Клеточная трансплантология и тканевая инженерия 2011; VIt2): 78-92.
  9. Petersen B. E., Bowen W. C., Patrene K. D. et al. Bone marrow as a potential source of hepatic oval cells. Science 1999; 284(5417): 1168-70.
  10. Theise N. D., Nimmakayalu M., Gardner R. et al. Liver from bone marrow in humans. Hepatology 2000; 32(1): 11-6.
  11. Alison M. R., Poulsom R., Jeffery R. et al. Hepatocytesfrom non-hepatic adult stem cells. Nature 2000; 406(6793): 257.
  12. Oh S. H. , Witek R. P., Bae S. H. et al. Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/ partial hepatectomy-induced liver regeneration. Gastroenterology 2007; 132(3): 1077-87.
  13. Dhawan A., Puppi J. , Hughes R. D. et al. Human hepatocyte transplantation: current experience and future challenges. Nat. Rev. Gastroenterol. Hepatol. 2010; 7(5): 288-98.
  14. Smets F., Najimi M. S. F., Sokal E. M. Cell transplantation in the treatment of liver diseases. Pediatr. Transplant. 2008; 12: 6-13.
  15. Asonuma K., Gilbert J. C., Stein J. E. et al. Quantitation of transplanted hepatic mass necessary to cure the Gunn rat model of hyperbilirubinemia. J. Pediatr. Surg. 1992; 27(3): 298-301.
  16. McKenzie T.J., Lillegard J. B. , Nyberg S. L. Artificial and bioartificial liver support. Semin. LiverDis. 2008; 28: 210-7.
  17. Киясов А. П. , Гумерова А. А. , Титова М. А. Овальные клетки - предполагаемые стволовые клетки печени или гепатобласты? Клеточная трансплантология и тканевая инженерия 2006; 2(4): 55-8
  18. Fausto N., Campbell J. S. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech. Dev. 2003; 120: 117-30.
  19. Sawitza I., Kordes C., Hausinger D. The niche of stellate cells within rat liver. J. Hepatol. 2009; 50(5): 1617-24.
  20. Черных Е. Р., Останин А. А. , Пальцев А. И. Стволовые клетки в регенерации печени: новые подходы к лечению печеночной недостаточности Гепатология 2004; 5; 24-33
  21. Arthur M. J. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 2002; 122: 1525-8.
  22. Friedman S. L. Reversibility of hepatic fibrosis and cirrhosisis it all hype? Nat. Clin. Pract. Gastroenterol. Hepatol. 2007; 4: 236-7.
  23. Dai L. J., Li H.Y., Guan L.X. et al. The therapeutic potential of bone marrow-derived mesenchymal stem cells on hepatic cirrhosis. Stem Cell Res. 2009; 2(1): 16-25.
  24. Киясов А. П., Одинцова А.Х., Гумерова А.А. и др. Трансплантация аутогенных гемопоэтических стволовых клеток больным хроническими гепатитами Клеточная трансплантология и тканевая инженерия 2008; 3(1): 70-5.
  25. Russo F. P., Alison M. R., Bigger B.W. et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 2006; 130: 1807-21.
  26. Онищенко Н.А., Люндуп А. В., Газизов И. М., и др. Двухфазная динамика фибролитического действия мультипотентных мезенхимальных стромальных клеток (ММСК) костного мозга при моделиро вании хронического фиброзирующего повреждения печени Вестник трансплантологии и искусственных органов 2011; XIII(3): 51-8.
  27. Shagidulin M., Onishchenko N., Krasheninnikov M. et al. Transplantation liver cells and multipotent mesenchymal stromal cells for correction and treatment of hepatic failure. British J. of Surgery 2010; 94(S4): 37-8.
  28. Bates R. C., Edwards N. S., Yates J. D. Spheroids and cell survival. Crit. Rev. Oncol. Hematol. 2000; 36(2-3): 61-74.
  29. Zahir N., Weaver V. M. Death in the third dimension: apoptosis regulation and tissue architecture. Curr. Opin. Genet. Dev. 2004; 14(1): 71-80.
  30. Grossmann J. Molecular mechanisms of «detachment- induced apoptosis - Anoikis». Apoptosis 2002; 7(3): 247-60.
  31. Chistiakov D.A. Liver regenerative medicine: advances and challenges. Cells Tissues Organs 2012; 196(4): 291-312.
  32. Lu T., Li Y., Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int. J. Nanomedicine 2013; 8: 337-50.
  33. Li Y. S., Harn H. J., Hsieh D. K. et al. Cells and materials for liver tissue engineering. Cell Transplant. 2013; 22(4): 685-700.
  34. Севастьянов В. И. Биоматериалы, системы доставки лекарственных веществ и биоинженерия Вестник трансплантологии и искусственных органов 2009; XI(3): 69-70
  35. Kim S. S. , Utsunomiya H., Koski J.A. et al. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann. Surg. 1998; 228(1): 8-13.
  36. Hanada S., Kojima N., Sakai Y. Soluble factor-dependent in vitro growth and maturation of rat fetal liver cells in a three-dimensional culture system. Tissue Eng. Part A. 2008; 14(1): 149-60.
  37. Jiang J., Kojima N., Guo L. et al. Efficacy of engineered liver tissue based on poly-L-lactic acid scaffolds and fetal mouse liver cells cultured with oncostatin M, nicotinamide, and dimethyl sulfoxide. Tissue Eng. 2004; 10(9-10): 1577-86.
  38. Matsumoto K., Mizumoto H., Nakazawa K. et al. Hepatic differentiation of mouse embryonic stem cells in a bioreactor using polyurethane/ spheroid culture. Transplant. Proc. 2008; 40(2): 614-6.
  39. Yan Y., Wang X., Pan Y. et al. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 2005; 26(29): 5864-71.
  40. Zhang F , Xu R , Zhao M J QSG-7701 human hepatocytes form polarized acini in three-dimensional culture. J. Cell Biochem. 2010; 110(5): 1175-86.
  41. Шагидулин М. Ю. , Онищенко Н. А. , Крашенинников М. Е. и др. Трансплантация клеточно-инженерных конструкций в печень обеспечивает длительную поддержку процессов восстановительной регенерации в поврежденной печени Вестник трансплантологии и искусственных органов 2013; XV(2): 64-74.
  42. Kinasiewicz A., Gautier A. , Lewinska D. et al. Culture of C3A cells in alginate beads for fluidized bed bioartificial liver. Transplant. Proc. 2007; 39(9): 2911-3.
  43. Lan S. F., Safiejko-Mroczka B. , Starly B. Long-term cultivation of HepG2 liver cells encapsulated in alginate hydrogels: a study of cell viability, morphology and drug metabolism. Toxicol. in vitro 2010; 24(4): 1314-23.
  44. Zhang S., Tong W., Zheng B. et al. A robust high-throughput sandwich cell-based drug screening platform. Biomaterials 2011; 32(4): 1229-41.
  45. Xiong A., Austin T.W., Lagasse E. et al. Isolation of human fetal liver progenitors and their enhanced proliferation by three-dimensional coculture with endothelial cells. Tissue Eng. Part A. 2008; 14(6): 995-1006.
  46. Lin P., Chan W. C., Badylak S. F. et al. Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng. 2004; 10(7-8): 1046-53.
  47. Uygun B. E. , Soto-Gutierrez A., Yagi H. et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 2010; 16(7): 814-20.
  48. Марковцева М. Г. , Немец Е. А. , Севастьянов В. И. Пористые трёхмерные носители для культивирования и трансплантации клеток на основе сополимера гидроксибутирата с гидроксивалератом Вестник трансплантологии и искусственных органов 2006; 2: 83-88
  49. Севастьянов В. И. , Перова Н. В. , Немец Е. А. , и др. Примеры экспериментально-клинического применения биосовместимых материалов в регенеративной медицине В: В И Севастьянов, М П Кирпичников, редакторы Биосовместимые материалы (учебное пособие). М: Изд-во «МиА»; 2011; Ч. II, гл. 3, с. 237-52.
  50. Готье С. В., Шагидулин М. Ю., Онищенко Н.А. и др. Коррекция хронической печеночной недостаточности при трансплантации клеток печени в виде суспензии и клеточно-инженерных конструкций (экспериментальное исследование). Вестник РАМН 2013; 4; 44-51.
  51. Davis M. W., Vacanti J. P. Toward development of an implantable tissue engineered liver. Biomaterials 1996; 17(3): 365-72.
  52. Balladur P., Crema E., Honiger J. et al. Transplantation of allogeneic hepatocytes without immunosuppression: long-term survival. Surgery 1995; 117(2): 189-94.
  53. Dixit V., Darvasi R. , Arthur M. et al. Restoration of liver function in Gunn rats without immunosuppression using transplanted microencapsul a ted hepatocytes. Hepatology 1990; 12(6): 1342-9.
  54. Wong H. , Chang T. M. Bioartificial liver: implanted artificial cells microencapsulated living hepatocytes increases survival of liver failure rats. Int. J. Artif. Organs 1986; 9(5): 335-6.
  55. Demetriou A.A., Whiting J. F. , Feldman D. et al. Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes. Science 1986; 233(4769): 1190-2.
  56. Bosman D. K., de Haan J. G., Smit J. et al. Metabolic activity of microcarrier attached liver cells after intraperitoneal transplantation during severe liver insufficiency in the rat. J. Hepatol. 1989; 9(1): 49-58.
  57. Kazemnejad S., Allameh A. , Soleimani M. et al. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. J. Gastroenterol. Hepatol. 2009; 24(2): 278-87.
  58. Piryaei A., Valojerdi M. R., Shahsavani M. et al. Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Rev. 2011; 7(1): 103-18.
  59. Vasanthan K. S., Subramanian A., Krishnan U. M. et al. Role of biomaterials, therapeutic molecules and cells for hepatic tissue engineering. Biotechnol. Adv. 2012; 30(3): 742-52.
  60. Wu C., Pan J., Bao Z., Yu Y. Fabrication and characterization of chitosan microcarrier for hepatocyte culture. J. Mater. Sci. Mater. Med. 2007; 18(11): 2211-4.
  61. Murua A., Portero A., Orive G. et al. Cell microencapsulation technology: towards clinical application. J. Control Release 2008; 132(2): 76-83.
  62. Uyama S., Kaufmann P. M., Takeda T. et al. Delivery of whole liver-equivalent hepatocyte mass using polymer devices and hepatotrophic stimulation. Transplantation 1993; 55(4): 932-5.
  63. Takeda T., Murphy S. , Uyama S. et al. Hepatocyte transplantation in Swine using prevascularized polyvinyl alcohol sponges. Tissue Eng. 1995; 1(3): 253-62.
  64. Kneser U., Kaufmann P.M., Fiegel H. C. et al. Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices. J. Biomed. Mater. Res. 1999; 47(4): 494-503.
  65. Kedem A., Perets A. , Gamlieli-Bonshtein I. et al. Vascular endothelial growth factor-releasing scaffolds enhance vascularization and engraftment of hepatocytes transplanted on liver lobes. Tissue Eng. 2005; 11(5-6): 715-22.
  66. Hou Y.T., Ijima H., Takei T. et al. Growth factor/ heparin-immobilized collagen gel system enhances viability of transplanted hepatocytes and induces angiogenesis. J. Biosci. Bioeng. 2011; 112(3): 265-72.
  67. Navarro-Alvarez N., Soto-Gutierrez A., Chen Y. et al. Intramuscular transplantation of engineered hepatic tissue constructs corrects acute and chronic liver failure in mice. J. Hepatol. 2010; 52(2): 211-9.
  68. Katsuda T., Teratani T., Ochiya T. et al. Transplantation of a fetal liver cell-loaded hyaluronic acid sponge onto the mesentery recovers a Wilson's disease model rat. J. Biochem. 2010; 148(3): 281-8.
  69. Zhou P., Lessa N., Estrada D. C. et al. Decellularized liver matrix as a carrier for the transplantation of human fetal and primary hepatocytes in mice. Liver Transpl. 2011; 17(4): 418-27.
  70. Levenberg S., Huang N. F., Lavik E. et al. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. PNAS USA 2003; 100(22): 12741-6.
  71. Soto-Gutierrez A. , Zhang L., Medberry C. et al. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng. Part C. Methods 2011; 17(6): 677-86.
  72. Takebe T., Koike N., Sekine K. et al. Engineering of human hepatic tissue with functional vascular networks. Organogenesis 2014; 10(2): 260-7.
  73. Schanz J., Pusch J., Hansmann J. et al. Vas cularised human tissue models: a new approach for the refinement of biomedical research. J. Biotechnology 2010; 148(1): 56-63.
  74. Larkin A. L. , Rodrigues R. R., Murali T. M. et al. Designing a multicellular organotypic 3D liver model with a detachable, nanoscale polymeric Space of Disse. Tissue Eng. Part C. Methods 2013; 19(11): 875-84
  75. Liu Tsang V. , Chen A.A., Cho L. M. et al. Fabrication of 3D hepatic tissues by additive photo patterning of cellular hydro gels. FASEB J. 2007; 21(3): 790-801.
  76. Hsu W. M., Carraro A. , Kulig K. M. et al. Liver-assist device with a microfluidics-based vascular bed in an animal model. Ann. Surg. 2010; 252(2): 351-7.
  77. Borenstein J. T., Weinberg E. J., Orrick B. K. et al. Microfabrication of three-dimensional engineered scaffolds. Tissue Eng. 2007; 13(8): 1837-44.
  78. Kulig K. M., Vacanti J. P. Hepatic tissue engineering. Transpl. Immunol. 2004; 12(3-4): 303-10.
  79. Mooney D. J., Vandenburgh H. Cell delivery mechanisms for tissue repair. Cell Stem Cell 2008; 2(3): 205-13.
  80. Sudo R. Multiscale tissue engineering for liver reconstruction. Organogenesis 2014; 10 (2): 216-24.
  81. Borenstein J. T., Vunjak-Novakovic G. Engineering tissue with BioMEMS. IEEE Pulse 2011; 2(6): 28-34.
  82. Goral V. N. , Hsieh Y. C., Petzold O. N. et al. Perfusion-based micro fluidic device for three-dimensional dynamic primary human hepatocyte cell culture in the absence of biological or synthetic matrices or coagulants. Lab. Chip. 2010; 10(24): 3380-6.
  83. Chung S., Sudo R., Mack P.J. et al. Cell migration into scaffolds under co-culture conditions in a micro fluidic platform. Lab. Chip. 2009; 9(2): 269-75.
  84. Zervantonakis I. K., Kothapalli C. R., Chung S. et al. Micro fluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics 2011; 5(1): 13406.
  85. Yamada M., Utoh R., Ohashi K. et al. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydro gel microfibers for long-term preservation of liver-specific functions Biomaterials 2012; 33(33): 8304-15.
  86. Sudo R., Mitaka T., Ikeda M. et al. Reconstruction of 3D stacked-up structures by rat small hepatocytes on micro porous membranes. FASEB J. 2005; 19(12): 1695-7.
  87. Okano T. Current Progress of Cell Sheet Tissue Engineering and Future Perspective. Tissue Eng. Part A 2014; 10: 1089.
  88. Kasuya J., Sudo R. , Mitaka T. et al. Spatiotemporal control of hepatic stellate cell-endothelial cell interactions for reconstruction of liver sinusoids in vitro. Tissue Eng. Part A 2012; 18(9-10): 1045-56.
  89. Du C., Narayanan K., Leong M. F. et al. Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials 2014; 35(23): 6006-6014
  90. Bhattacharya M., Malinen M. M., Lauren P. et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J. Control Release 2012; 164(3): 291-8.
  91. Vanderhooft J. L. , Alcoutlabi M. , Magda J. J. et al. Rheological properties of cross-linked hyaluronan-gelatin hydro gels for tissue engineering. Macromol. Biosci. 2009; 9(1): 20-98.
  92. Malinen M. M., Kanninen L. K., Corlu A. et al. Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydro gels. Biomaterials 2014; 35(19): 5110-21.
  93. Torok E., Lutgehetmann M., Bierwolf J. et al. Primary human hepatocytes on biodegradable poly (l-lactic acid) matrices, a promising model for improving transplantation efficiency with tissue engineering. Liver Transpl. 2011; 17(2): 104-14.
  94. Zhang S., Zhang B., Chen X. et al. Three-dimensional culture in a microgravity bioreactor improves the engraftment efficiency of hepatic tissue constructs in mice. J. Mater. Sci. Mater. Med. 2014; 25(12): 2699-709.
  95. Takebe T., Zhang R. R., Koike H. et al. Generation of a vascular zed and functional human liver from an iPSC-derived organ bud transplant. Nat. Protoc. 2014; 9(2): 396-409.
  96. Mironov V., Visconti R. P., Kasyanov V. et al. Organ printing, tissue spheroids as building blocks. Biomaterials 2009; 30(12): 2164-74.
  97. Woodrow K. , Wood M., Saucier-Sawyer J. et al. Biodegradable Meshes Printed with Extracellular Matrix. Tissue eng. Part A. 2009; 15(5): 1169-79.
  98. Yagi H. , Fukumitsu K., Fukuda K. et al. Human-scale whole-organ bioengineering for liver transplantation, a regenerative medicine approach. Cell Transplant. 2013; 22(2): 231-42.
  99. Uygun B. E., Soto-Gutierrez A., Yagi H. et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 2010; 16(7): 814-20.
  100. Baptista P. M., Siddiqui M. M., Lozier G. et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 2011; 53(2): 604-17.
  101. Shupe T. , Williams M. , Brown A. et al. Method for the decellularization of intact rat liver. Organogenesis 2010; 6(2): 134-6.
  102. Wang Y., Cui C. B., Yamauchi M. et al. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology 2011; 53(1): 293-305.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies