Chondroitinsulfate proteoglycan receptors in the nervous system



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Chondroitinsulfate proteoglycans (CSPG) play a crucial role in the inhibition of posttraumatic axonal regeneration in the central nervous system. Understanding of the mechanism of the CSPG action on axonal regeneration is important for treatment of patients after the brain and spinal cord injuries. Here we make a review of recent studies that discovered CSPG receptors acting in the plasma membrane of neurons.

Full Text

Restricted Access

About the authors

M. N Paveliev

Neuroscience Center, University of Helsinki; Kazan (Volga region) Federal University

TY. V Baltina

Kazan (Volga region) Federal University

References

  1. Kwok J.C., Dick G., Wang D. et al. Extracellular matrix and perineuronal nets in CNS repair. Dev. Neurobiol. 2011; 71(11): 1073-89.
  2. Kwok J.C., Warren P., Fawcett J.W. Chondroitin sulfate: a key molecule in the brain matrix. Int. J. Biochem. Cell Biol. 2012; 44(4): 582-6.
  3. Silver J., Miller J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 2004; 5(2): 146-56.
  4. Fawcett J.W., Schwab M.E., Montani L. et al. Defeating inhibition of regeneration by scar and myelin components. Handb. Clin. Neurol. 2012; 109: 503-22.
  5. Cregg J.M., DePaul M.A., Filous A.R. et al. Functional regeneration beyond the glial scar. Exp. Neurol. 2014; 253: 197-207.
  6. Andrews E.M., Richards R.J., Yin F.Q. et al. Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury. Exp. Neurol. 2012; 235(1): 174-87.
  7. Sherman L.S., Back S.A. A 'GAG' reflex prevents repair of the damaged CNS. Trends Neurosci. 2008; 31(1): 44-52.
  8. Snow D.M., Atkinson P.B., Hassinger T.D. et al. Chondroitin sulfate proteoglycan elevates cytoplasmic calcium in DRG neurons. Dev. Biol. 1994; 166(1): 87-100.
  9. Sivasankaran R., Pei J., Wang K.C. et al. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat. Neurosci. 2004; 7(3): 261-8.
  10. Schweigreiter R., Walmsley A.R., Niederost B. et al. Versican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75NTR/NgR-independent pathways that converge at RhoA. Mol. Cell Neurosci. 2004; 27(2): 163-74.
  11. Liu B.P., Cafferty W.B., Budel S.O. et al. Extracellular regulators of axonal growth in the adult central nervous system. Philos. Trans R. Soc. Lond. B. Biol. Sci. 2006; 361(1473): 1593-610.
  12. Shen Y., Tenney A.P., Busch S.A. et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 2009; 326(5952): 592-6.
  13. Aricescu A.R., McKinnell I.W., Halfter W. et al. Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma. Mol. Cell Biol. 2002; 22(6): 1881-92.
  14. Chagnon M.J., Uetani N., Tremblay M.L. Functional significance of the LAR receptor protein tyrosine phosphatase family in development and diseases. Biochem. Cell Biol. 2004; 82(6): 664-75.
  15. Coles C.H., Shen Y., Tenney A.P. et al. Proteoglycan-specific molecular switch for RPTPa clustering and neuronal extension. Science 2011; 332(6028): 484-8.
  16. Paveliev M., Lume M., Velthut A. et al. Neurotrophic factors switch between two signaling pathways that trigger axonal growth. J. Cell Sci. 2007; 120(Pt 15): 2507-16.
  17. McLean J., Batt J., Doering L.C. et al. Enhanced rate of nerve regeneration and directional errors after sciatic nerve injury in receptor protein tyrosine phosphatase sigma knock-out mice. J. Neurosci. 2002; 22(13): 5481-91.
  18. Sapieha P.S., Duplan L., Uetani N. et al. Receptor protein tyrosine phosphatase sigma inhibits axon regrowth in the adult injured CNS. Mol. Cell Neurosci. 2005; 28(4): 625-35.
  19. Thompson K.M., Uetani N., Manitt C. et al. Receptor protein tyrosine phosphatase sigma inhibits axonal regeneration and the rate of axon extension. Mol. Cell Neurosci. 2003; 23(4): 681-92.
  20. Elchebly M., Wagner J., Kennedy T.E. et al. Neuroendocrine dysplasia in mice lacking protein tyrosine phosphatase sigma. Nat. Genet. 1999; 21(3): 330-3.
  21. Wallace M.J., Batt J., Fladd C.A. et al. Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPsigma. Nat. Genet. 1999; 21(3): 334-8.
  22. Fry E.J., Chagnon M.J., Lopez-Vales R. et al. Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma deficient mice. Glia. 2010; 58(4): 423-33.
  23. Grecco H.E., Schmick M., Bastiaens P.I. Signaling from the living plasma membrane. Cell. 2011; 144(6): 897-909.
  24. Nelson S., Horvat R.D., Malvey J. et al. Characterization of an intrinsically fluorescent gonadotropin-releasing hormone receptor and effects of ligand binding on receptor lateral diffusion. Endocrinology 1999; 140(2): 950-7.
  25. Sharma K., Selzer M.E., Li S. Scar-mediated inhibition and CSPG receptors in the CNS. Exp Neurol. 2012; 237(2): 370-8.
  26. Fisher D., Xing B., Dill J. et al. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J. Neurosci. 2011; 31(40): 14051-66.
  27. Dickendesher T.L., Baldwin K.T., Mironova Y.A., et al. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat. Neurosci. 2012; 15(5): 703-12.
  28. Schwab M.E., Strittmatter S.M. Nogo limits neural plasticity and recovery from injury. Curr. Opin. Neurobiol. 2014; 27: 53-60.
  29. Borrie S.C., Baeumer B.E., Bandtlow C.E. The Nogo-66 receptor family in the intact and diseased CNS. Cell Tissue Res. 2012; 349(1): 105-17.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies