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ABSTRACT

BACKGROUND: The study presents machine-learning (ML) classification approaches for the
state/stage differentiation of creative tasks using the “test-control” approach. The control tasks were
considered as the initial stages of the creative activity. Theime-series and time-frequency
electroencephalography (EEG) data analyses were employed in three divergent thinking tasks: 1)
creating endings to well-known proverbs (“PROVERBS”, event-related potential [ERP] paradigm); 2)
creating stories (“STORIES”, continuous EEG); 3) free creative painting (“viART”, continuous EEG).
AIM: To compare and select effective ML classification approaches for EEG signal separation at
different stages or states of creative task activity.

METHODS: In this study, 22 individuals participated in the “PROVERBS” (ERP paradigm), 15 in the
“STORIES,” and 1 (a longitudinal case study) in the “viART” task. Linear and convolutional neural
network (CNN) classifiers were used. EEG data were previous artifacts corrected and converted to
current source density (CSD). Continuous EEGs were divided into 4-s intervals and 1500 ms after
stimulus presentation, were used in ERPs. The EEG/ERP time-frequency maps (Morlet wavelet
transformation) for 3-30 Hz were generated for 4-s intervals with 100 ms shift (continuous EEGSs in
“STORIES” and “viART”) or for 1500 ms after stimulus presentation (ERPs in “PROVERBS”) and
consisted of combined images (224x224 px) for frontal (Fz) and parietal (Pz) brain zones. Image
classification was carried out using the modified CNN (ResNet50, ResNet18 architectures).

RESULTS: The offline classification accuracy of the four-class system (description of a picture,
inventing a plot, continuation of story’s plot, and background with open eyes) in the “STORY”
creation task was up to 96.4% [+8.3 SD] with ResNet architectures (ResNet50 and ResNet18).
The accuracy of the three states discrimination of the artists’ creative painting (resting state with open
eyes, painting on canvas, and viewing the painting) was 86.94% for kernel naive Bayes and 98.2% for
CNN. For the trained and tested samples given for the CNN in consecutive order (neurointerface
mode), the accuracy diminished to 70.0% [11% SD] on average. In the ERP paradigm “PROVERBS”,
the classification accuracy of the three-class system (creation of “new” ending, naming of semantic
synonym, and remembering of the known ending) was 80.5% [+8.7 SD] for the common spatial
pattern, followed by rSVM(radial kernel basis support vector machine), compared with 43.2%
[+£8.8 SD] for CNN.

CONCLUSION: The use of CNNs allowed better classifying of “continuous” long-term states of
creative activity. In fast “transient processes” such as ERP, time-series classifiers with spatial filtering
proved to be more efficient.

Keywords: neural networks; creativity; artistic creativity; supervised machine learning;
electroencephalography; EEG; event-related potential; ERP; time-frequency analysis.
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NMoaxoabl n meToAbl MaLWMHHOIO OOyYeHUA AnNA pasfeneHus
HeNpoMnU3NONOrMYeCKUX XapakTepuCcTMK TBOPYECKMUX COCTOAHUN/
3TanoB TBOPYECKON AEATENIbHOCTU Ha OCHOBE BPEMEHHLIX PSAAOB U
YacCTOTHO-BpeMeHHbIX npusHakoB J3AI/Bll-curHanos

H.B. lllemsxuna, I'.C. Bemuko6oper, XK.B. Haroprora
WucTutyT sBOomonnonHON Qusnonornu u Omoxumum uM. MI.M. CeuenoBa Poccwmiickoii akameMuu
Hayk, CaakT-IleTepOypr, Poccuiickas denepanus

AHHOTALUA

O6ocHoBanue. B nanHO#l paboTe mpennmpuHsATa MOIBITKA «MAIIMHHOTO» O(dIaiH-pa3zfaeneHus u
KJaccu(UKaIMA HEKOTOPBIX COCTOSHHIM/CTanuil BBIMONHEHHUS TBOPUECKUX 33/1a4 C HCIOIb30BAHUEM
MOIX0Ja «TEeCT-KOHTPOJb». MBI paccMaTpHUBaid BBHINIOJHEHHE KOHTPOJBHBIX 3alad B KauecTBE
HayaJbHBIX CTaAMM  peanu3alui  TBOpYECKOM  JnesTenpHOCTH. [IpoBeneHO  CpaBHUTENBHOE
HCCIIeIOBaHNE TOJXO/IOB K KIacCU(pHUKAIIMA BPEMEHHOTO CHTHajla M YaCTOTHO-BPEMEHHBIX KapT IMpU
BHIMOJIHCHUN TPEX 3aJaHuil Ha JAMBEPIreHTHOE MBIIUICHHe: 1) TpUAyMbIBaHWE OKOHYAHHUH K
obmensBecTHpiM MocioBunaM («I[IOCJIOBULIbI», nmapaaurma BeI3BaHHBIX MOTeHIHanoB, BII); 2)
npunymbiBanue pacckazoB («PACCKA3», nemnpepsiBHas O30I); 3) coszmaHue XyA0KECTBEHHOTO
n300pakeHus B mpouecce xuponucu («ViART», HenpepsiBHast 9317) Ha pa3HBIX dTanax.

Heasb ucciienoBanusi — CPaBHUTh U BHIOpAaTh MOIXOABI K KiaccH(UKaMH xapakTepuctuk D01 -
CHI'HaJIa OTICJIbHBIX TBOPUSCKHUX COCTOSHUIT /CTa il TBOPUECKOI e TeIbHOCTH.

Mertoapl. B 3amanun «[1IOCJIOBULIbl» (mapagurma BII) ywactBoBasio 22 uesjoBeka, B 3aJaHUU
«PACCKA3» — 15 yenoBek W OJMH 4YEJIOBEK NMPUHUMAJ y4yacTHE B JIOHTHTIOJHOM HCCJIEIOBaHUH
XyJIOKECTBEHHOTO TBOpYecTBa (case study). Mbl HCHONB30BaIM JIMHEHHBIE METO/bI aHAJIW3a MO
OTHOILICHUIO K mpeoOpazoBanHomy k CSD (current source density) ceipomy curnany O9I u
cBéprounble Helipornsie cetu (convolutional neural network, CNN) mis kaaccuuKanuym 9acTOTHO-
BpeMeHHBIX KapT (BeiiBiier Mopne, 3-30 I'n). HenpepriBabie D31 OblIn pasienieHbl Ha SMOXH 110 4 ¢,
st BIT ucnionszoBanu 1500 Mc mocne mpeabsBiIeHUs] cTUMYJa. YacTOTHO-BpEMEHHBIE KapThl ObUIH
CreHepHupoBaHbl 1Jis 4-cekyHAHbIX nHTepBanoB D3I ¢ marom 100 Mc (HenpepsiBHBIe DOI B 3a1aHUAX
«PACCKA3», «ViIART») wm 1500 mc (B 3amanum «[IOCJIOBULIbI») wu cocrosiim U3
KOMOWHHPOBAaHHOTO H300pakeHus (224x224 pX) mis pponransHoit (FZ) u remenHoii (Pz) 30H Mo3ra.
Knaccudukanmo u3o0pakeHuid nmpoBoauiin ¢ nomomipio Moguduiuposannoir CNN (apxurexTypbl
ResNet50, ResNet18).

Pesynbrarbl. Jlns  ueThIpéX KJIAcCOB TOYHOCTh kiaccupukanmu B 3amade  «PACCKA3»
(mpuIyMBbIBaHWE CIOKETA, MPOJOIDKEHHWE CIOKETa WCTOPUH, ONHCaHWe wu300pakeHus, (oH ¢
OTKPBITBIMU T1a3aMu) coctanisiia 96,4% [+8,3 SD] ¢ ResNet50 u ResNet18. Tpu cocrosinus «ViART»
(CKMBOIHCH HA XOJICTE, MPOCMOTP KapTHHBI, POH C OTKPHITHIMHU TJa3amMu) namu 86,94% s Kernel
naive bayes u 982% mmt CNN. Opmako B mapagurMe IIOCIEIOBATEIBHOTO pa3jeieHus Ha
00y4aroIyo ¥ TPEHUPOBOYHYIO BHIOOPKHU (MOJeNb uHTep(deiica) TOYHOCTh Kiaaccuukanuy ymnajia B
cpeanem 1o 70,09%(11% SD).

B mapagurme BIT «ITOCJIOBUIIbI» TounocTh Kiaaccupuramuu TpEX KIIACCOB (CO3JaHHE «HOBOIO»
OKOHYaHUsI, TOJ0Op CEMAaHTHYECKOIO0 CHHOHMMAa W BOCIPOW3BEACHUE W3 MaMSTH HW3BECTHOTO
OKOHYaHHUS TMOCaoBUI) cocrtaBmsia 80,5% [+8,7 SD] mms CSP (common spatial pattern) c
nocienytommM rSVM(MeTo ONOpPHBIX BEKTOPOB HAa OCHOBE PajMiaibHON 0a3MCHON (YHKIUH), B TO
Bpems kak TouHocTh CNN cocrasisina 43,2% [+£8,8 SD].

3akaouyenue. Ha 1anHBIi MOMEHT HCHOJB30BaHME CBEPTOUHBIX HEHPOHHBIX CETEH MOKa3ayio
OTHOCUTENILHO JYYIIUA pe3ysbTarT sl KJIACCHOUKAIMH «HEMPEPHIBHBIX», JUTMTEIBHBIX COCTOSIHUN
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TBOPYECKOHM ACATEIBHOCTH TIO0 HM300pa)KCHHSIM YaCTOTHO-BPEMEHHBIX KapT. B To ke BpeMs oOlleHKa
OBICTPBIX «IIEPEXOHBIX MPOIeCCOBy, Takux kak BII, Obuta Oonee 3ddexkTuBHOM pu Knaccudukamm
«BPEMEHHBIX PSAJ0BY» C IPOCTPAHCTBEHHON (PUIIbTpaIUEH.

KioueBble cjioBa: HEHpOHHBIE CETH; XYAOKECTBEHHOE TBOPUYECTBO; BepOalbHOE TBOPYECTBO;
MalllMHHOE OOY4YeHHEe C YyuHTelleM; aiekTposHuedanorpadus; O3I; BbI3BaHHBIE MOTCHUHATDI, ;
YaCTOTHO-BPEMEHHON aHAJIM3.
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INTRODUCTION

Machine learning (ML) is widely used in the recognition of various “functional” states (emotions,
phases of sleeping, tiredness, etc.) from physiological data (particularly, electroencephalography
[EEG]); however, no many studies of cognitive state discrimination have been conducted thus far.
Moreover, ML is proposed as the basis for brain—-computer interface development in different areas of
rehabilitation — motor [1], cognitive [2], or some enhancement procedures [3]. Studies on state
recognition have shown great variability in ML methods, choice of classification approaches, and input
features. The two main approaches to state recognition based on EEG features are as follows: 1)
recognition of characteristics of “continuous” EEG data when the state either remains constant or
slowly changes over a long time, i.e., from a few seconds to several minutes (spontaneous EEG); or 2)
recognition of characteristics of “short” intervals, i.e., lasting up to a couple of seconds when brain
activity is associated with fast decisions or perceptive and cognitive responses to some external
stimulus, such as event-related potentials (ERP). In the first case, strict synchronization with external
events is unnecessary, and features for classification relate to the so-called “spontaneous” EEG, which
might be represented as frequency band power features [4—6]. For “transient” classifications based on
ERP features, time series is mostly used [4]. In addition, no common approaches could be used without
testing it for the type of the task. Thus, this study aimed to explore and compare different ML
approaches that could be used for the classification of creativity stages in continuous EEGs and short
ERP trials. In both cases, tasks were tested in divergent thinking without and with time restriction. As
the model situation, the test-control approach was used, and control tasks were considered possible
(according to hypothesized mental processes) and previous creative decisions as stages/states.

Literature data on the implementation of ML in creativity research are limited. In a previous study [7],
the two-class system (more and less creative states in alternative use task and normal or uncommon
(more creative) uses of everyday objects) achieved an average accuracy of 63.0%, and the ML
approach used included spectrally weighted common spatial patterns (CSPs) for feature extraction and
guadratic discriminant analysis. Discrimination of more and less creative individuals based on EEG
signals had 82.3% accuracy. Data [8] on the differentiation of three classes — creating an original
ending, suggesting a synonym, or remembering a well-known ending of a proverb or saying — were
explored, with an average accuracy of 48+5% for the best linear classifier using a classifier learner.
The physiological effects described for these data among others revealed higher power (8-9 Hz) in the
right frontal and left parietal regions for 400—-700 ms after stimulus onset while creating original and
synonymic endings compared with the control task of remembering the ending of a well-known
proverb. In the nonverbal creativity model [9], i.e., divergent thinking during painting, the accuracy for
the separation of the background state and creative and noncreative drawing was 66.9% when using a
classifier based on a support vector machine (SVM; Gaussian radial basis function and classifier
learner). The physiological effects demonstrated a higher percentage of theta and alpha frequencies in
the frontal (5-6 and 12-13 Hz), central (4—7 and 8-10 Hz), and parietal (4-5, 67, 8-9, and 12-13 Hz)
zones during creative sketching in comparison with noncreative lines and object drawing. Creativity is
a heterogeneous process in which certain stages can be defined, for example, idea generation, idea
elaboration, idea evaluation or generation, and exploratory stages [10]. In a previous study, the specific
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creative demands were set by instructions [11] and considered models of creative process stages; thus,
the performance of these tasks could correspond to the distinct states of creative thinking. In our study,
models of “STORY” creation and “PROVERBS” ending creation can be considered different creative
states (stages defined by instruction). More clearly, different stages of creative processes can be
distinguished in free creative activities using artistic painting. In this case, all stages from idea
generation (sketching) via idea elaboration (canvas painting) and idea evolution (color painting) to
evaluation (viewing own painting) can be defined and verified by observation.

To the best of our knowledge, not many researchers have attempted to build classifiers to differentiate
creative states and stages. However, such classifiers could be used in cognitive rehabilitation [12].

The use of ML algorithms to differentiate stages of the creative process is within fundamental science
and allows us to answer the question of whether information about the type of performed mental
operations is reflected in a complex EEG pattern. On the contrary, these approaches can be used to
create a “passive” brain—computer interface (see, for example, [13]); when using an external stimulus
(music and light), the user can be informed about his/her achievement of the “optimal” state for
creative activity.

Aim — the study aimed to find the most effective EEG-based classifiers and feature generation’s
approaches to differentiate stages and states of creative thinking.

MATERIALS AND METHODS

STIMULI AND TASKS

Three models of divergent thinking, namely, verbal (“STORIES”) and nonverbal (“PAINTING
viART”) without time restriction and verbal (“PROVERBS”) in the ERP paradigm (with time
restriction), were applied. In “STORIES” and “viART”, continuous EEGs were analyzed, whereas in
the creative model, “PROVERBS” was examined in relatively short trials.

DIVERGENT THINKING TASKS WITH CONTINUOUS ELECTROENCEPHALOGRAMS REGISTRATION

The comparative study using time-series and time-frequency maps (wavelet transformation)
classifications at different stages of creating endings to well-known proverbs (“PROVERBS”), plot of
stories (“STORIES”), or visual images (“viART”’) was conducted.

STORY CREATION TASK (“STORY”)

Electroencephalography data from the story creation task [14] were used for the four-class system. The
participants created stories using black-and-white pictures with only two participants from the Guilford
and O’Sullivan social 1Q test [15].

The three tasks were as follows: the free creation task (FCrT), where the participants were told to
create the plot before and after the situation based on what they had seen in the picture. The
participants mentally pronounced sentences and voluntarily pressed the button when they were ready to
tell the story. In the effortful creation task (EffCrT), the participants were asked to continue the story
plot, changing the previous line they had just created and using the same picture presentation. FCrT
and EffCrT could be considered two stages of the same process — creating the original story with
some impasse and overcoming self-induced short memory stereotype — i.e., in a situation, the
participants had to expand the story. In the control task, the participants were asked to mentally
describe the picture.

ECOLOGICAL (FREE) PAINTING WITH THREE OR FIVE STATES/CLASSES: “VIART” MODEL

The EEG data used for classification were taken from a longitudinal case study with the participation
of an artist (J.P.). Classification was conducted for three (final stage of canvas painting, viewing own
painting, and background state with opened eyes) or five (sketching in the album, oil transfer to canvas,
final stage of the canvas work, viewing own painting, and a background state) classes, respectively. All
stages of free creative painting were empirically observed and marked through time by the investigator.

DIVERGENT THINKING TASK WITH TIME RESTRICTION (EVENT-RELATED POTENTIAL
PARADIGM)
Electroencephalography data were collected while the participants were creating original endings for
known proverbs and sayings (Cr) [16]. The control tasks were to state (recall) the commonly known
ending of an uncompleted proverb or saying (C) or to give a synonym for proverbs’ ending (Syn). All
tasks were associated with the retrieval of information from long-term memory. The difference
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between creative and noncreative tasks was in overcoming the previously formed stereotype and
searching (creation) for a new original ending of a proverb or saying that would significantly change its
meaning.

PARTICIPANTS

Fifteen participants (aged 18-20 years, 9 female) took part in the divergent verbal creative study
without time restriction (“STORIES” model), and one participant (professional artist, J.P., aged 57
years) was involved in the nonverbal creative painting task (“viART”’) without time restriction.

In the model of divergent verbal tasks with time restriction (ERP paradigm), data of 22 participants
(aged 18-22 years, 18 female) were analyzed and classified.

All procedures were conducted in accordance with the Declaration of Helsinki (1974) and its
subsequent updates. The study was approved by the Ethics Committee of Sechenov Institute of
Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg,
Russia (Protocol number 2-02, February 2, 2022). Participation in the study was voluntary, and
participants could drop out at any moment. All participants were free of any medical or neurological
disorders and had normal or corrected vision. Written consent was obtained from all the study
participants before the study screening in according to the study protocol.

PSYCHOLOGICAL TESTING

To ensure that the groups had homogenous cognitive abilities, standard progressive matrices [17] were
applied. The matrix test is a nonverbal, culturally independent IQ test that measures deductive
reasoning through five sets of multichoice tasks. Obtained data revealed average 1Q values, i.e.,
~110+8.

EEG/ERP PROCEDURE AND DATA REGISTRATION

EEG/ERPs were recorded with “Mitsar 31-channel” (Fpl, Fpz, Fp2, F7, F3, Fz, F4, F8, FT7, FC3,
FCz, FC4, FT8, T3, C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TP8, T5, P3, Pz, P4, T6, O1, Oz, and O2)
EEG system (“Mitsar Ltd.”, St. Petersburg, http://www.mitsar-medical.com) or with the “SmartBCI
24-channels”(“Mitsar Ltd.”, St. Petersburg, http://www.mitsar-medical.com) (Fpl, Fp2, F7, F3, Fz, F4,
F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2) EEG system through the WIinEEG software
package (Ponomarev V.A, Kropotov Ju.D, registered for a computer program RF N 2001610516,
08.05.2001). Silver chloride electrodes were positioned according to the modification by 10-10% or
10-20%. Input signals were referenced to the linked ears, filtered between 0.53 and 30 Hz, and were
digitized at a sampling rate of 500 or 250 Hz correspondingly, with a notch filter of 45-55 Hz. The
ground electrode was located between the Fpz and Fz sites on the forehead. Resistance of the
electrodes did not exceed 5 kOhm.

ELECTROENCEPHALOGRAPHY SIGNAL ARTIFACT CORRECTION

The eye-blink artifacts were corrected by zeroing the activation curves of individual independent
components corresponding to eye blinks. These components were obtained by the application of
independent component analysis (ICA) to the raw EEG fragments. The method has been previously
described [18-20]. High- and low-frequency activities were automatically marked as artifacts and were
excluded from further analysis. The thresholds were set as follows: (1) 50 uV for the slow waves in the
0-2 Hz band and 2) 35 pV for the fast waves in the 20-35 Hz band.

ELECTROENCEPHALOGRAPHY SIGNAL FEATURE EXTRACTION

The search for informative features and a short-term approach for EEG data preprocessing is important
for state classification, which could be used in practical applications. The difficulty of classification of
EEG signals is associated with the low spatial resolution of this method. To increase the spatial
resolution of EEG, the current source density (CSD) transformation was used [21, 22—-24], which can
be employed for both continuous EEG and ERP. The CSD reduces the volume conduction effect on the
signal recorded from the head surface [22, 23] and makes local differences distinguishable that can
otherwise be masked by the activities of the neighboring cortical areas [24].

CONTINUOUS ELECTROENCEPHALOGRAPHY SIGNAL FEATURE EXTRACTION (STORIES AND
“VIART” MODELS)
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The time-series feature vector generation and wavelet time-frequency analysis were used. In both
cases, the artifact-free CSD-transformed EEGs were divided into 4-s fragments with a shift of 100 ms
for further analysis.

Time-series feature vector generation. The time series of EEG amplitudes from two electrodes (Fz
and Pz) were combined into one feature vector: 2000 time points for each 4-s EEG fragment. The
number of 4-s EEG fragments (trials) for classification was equalized between classes in each
participant individually.

Wavelet time-frequency analysis. Continuous wavelet transform (CWT) was implemented in Matlab
[25]. The analytic Morlet wavelet was used to create the CWT (40 voices per octave) in each 4-s
fragment. L1 normalization was used by the CWT function. The minimum and maximum scales for the
wavelet energy visualization on time-frequency maps were set equally for all states and participants
(max = 12 for continuous EEG). The frequency was presented on a logarithmic scale. The amplitude
was normalized within the specified range for each sample. Combined together, time-frequency maps
(CWT plotted graphs) from frontal (Fz) and parietal (Pz) electrodes formed one image with
224x224 px resolution. Samples of such images were used as trained and test sets for the ResNet50
convolution network for creative state classification. The modified architecture — ResNet18 (with 70
layers) — was tested for CWT combined images. The number of images for classification was
comparable between classes in each participant.

FEATURE EXTRACTION IN THE EVENT-RELATED POTENTIALS PARADIGM

As previously shown [8], the classification of raw time-series signal in the PROVERBS model had an
average accuracy of 48+5% for three classes. Thus, we had to explore and compare other approaches to
choose more robust classification methods for transient processes such as ERPs.

At this time, for ERP feature extraction, CSP decomposition was applied for the time-series analysis
and wavelet time-frequency analysis.

Time-series CSP feature vector generation. The CSP was used for feature generation in the time
domain for short-time intervals (1500 ms) after stimuli presentation. CSPs maximize the variance for
one class (least-squares sense) but minimize the variance for the other [26]. As the CSP parameter, the
number of components was set. The classifier could not accurately distinguish between the two classes
with too few components. However, if there were too many components, the classifier weights might
be significantly overfit [27]. CSP was calculated on the space of electrodes located in the central
regions (F3, Fz, F4, FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, and P4) using MNE-Python
(https://mne.tools/stable/generated/mne.decoding.CSP.html). The number of components was selected
empirically and was equal to 15.

For the multiclass paradigm (three classes in our case), CSPs were calculated by joint approximate
diagonalization that might be equivalent to an ICA, and a method of choosing independent components
(ICs) that approximately maximize mutual information of I1Cs and class labels was presented [28].
Wavelet time-frequency analysis. All preprocessing was the same as described above for continuous
EEG data with a time window difference — here, the 1500-ms time following stimuli presentation was
used for the CWT time-frequency calculation. The minimum and maximum scales for the wavelet
energy visualization on the time-frequency maps were set equally for all states and participants (max =
16 for ERP).

CLASSIFICATION METHODS

Electroencephalography signal time series were classified using algorithms from the classifier learning
toolbox in Matlab. The results of the method with the best accuracy classification for each participant
were considered. An empirical assessment of the generalization ability of algorithms was performed
automatically by K-folds cross-validation: the total number of trials was successively divided into five
samples (nonoverlapping “bootstrap”), with four of them (80% trials) included in the training sample
and one (20% trials) in the test sample. The training and test samples of the trials did not overlap. The
principal component analysis tool in Matlab was used to reduce the dimension of the input feature
vector.

The images of time-frequency maps obtained for “STORY”, “viART”, and “PROVERBS” models
were classified using a convolutional neural network (CNN, with ResNet50 architecture) in Matlab
Deep Network Designer Toolbox. The numbers of classes (three, four, or five) were set at the last fully
connected level. The total samples (images) set for each participant was randomly divided into three
nonoverlapping samples: test (15-25% depending on the size of the total sample), validation (15-30%
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of the remaining set), and training. Training options for CNN were set as default in Matlab Deep
Network Designer Tool with MaxEpoch of 30 and MiniBatchSize of 32.

The CSP-filtered data (“PROVERBS” models) were classified using SVM with the radial basis
(kernel) function (RBF) and with one-against-each approach of multiclass classification (skLearn and
Python). In all approaches to the classification, the sample sets for different classes were equal in every
participant so the empirical chance level was close to the theoretical chance level (20.0; 25.0; and
33.3% for the five-, four-, and three-class systems, respectively). The classification accuracy far
exceeding this threshold was considered significant.

In both continuous tasks (“STORY” and “viART”), the “neurointerface usage conditions” were
modeled. The training and testing sample sets in these cases were formed not by bootstrapping from
the whole EEG but consequently: training sample (from the first part of each EEG record) and then the
testing sample (from the last part of each EEG record).

STATISTICAL ANALYSIS

Statistical comparison of different approaches to classification was performed using the Wilcoxon test
depending on the samples, and significant differences with p <0.05 were considered. The Wilcoxon test
was selected because we did not expect a normal classification accuracy distribution in the participants’
sample. Moreover, in each participant, since the same data were classified, expected dependent
classification accuracies were obtained by different methods.

RESULTS

CLASSIFICATION OF SPONTANEOUS ELECTROENCEPHALOGRAPHY SIGNAL CHARACTERISTICS
DURING DIVERGENT CREATIVE THINKING

Story creation model. A four-class classification was made, i.e., creation of a story plot based on a
picture (stage 1, FCreT), creation of the story’s plot further changes (stage 2, EffCrT), description of a
picture, and background EEG with eyes open (Table 1).

Table 1. Accuracy for the four-class classification based on spontaneous EEG features: time series and images of time-
frequency maps from the wavelet analysis

Ta6nuua 1. ToYyHOCTb 4-KnaccoBoW Knaccudukaumm npusHakoB CMOHTaHHOM JII: BpeMeHHLIX pPsSiAOB U M306paxkeHuMn
YacCTOTHO- BPpeMEeHHLIX KapT BenBneT-aHanmsa

Subject number Time-series classification (4 classes) Wavelet images classification (4 classes)
Accuracy; %+SD Classifier ResNet50; accuracy, %

S1 53.5+1.7 Ensemble bagged tree 100

S2 48.843.3 Ensemble boosted tree 75

S3 74.3+1.8 Ensemble bagged tree 99.7

S4 43.4+0.2 Tree medium tree 97.2

S5 89.7£1.0 Ensemble bagged tree 100

S6 63.7+2.7 Ensemble bagged tree 100

S7 54.6 1.5 Gaussian naive bayes 100

S8 49.8+0.7 Kernel naive bayes 98

S9 87.9£1.5 Ensemble subspace knn 100

S10 45.1+0.5 Ensemble bagged tree 100

S11 57.3+3.0 Ensemble bagged tree 100

S12 59.5+0.5 Ensemble bagged tree 99.3

S13 64.9+1.9 Ensemble bagged tree 100

S14 69.5+1.1 Ensemble bagged tree 100

s15 334405 Ensemble subspace Discriminant 770

Mean 59.7£15.8 96.4+8.3

The level of classification performance with the time-series features was higher than that at the
theoretical chance level (25% for the four-class system) in all participants (See Table 1). The types of

7



I'ennl u kieTku | Genes & cells
OpurunansHoe uccienosanue | Original Study Article
DOI: https://doi.org/10.23868/gc 562731
OJIOBPEHA K ITYBJIUKAIINMA | PUBLISHED AHEAD OF PRINT

classifiers showed that better results varied among participants; however, most often (for 9 among 15
subjects), a higher accuracy in recognizing the stages of story creation was demonstrated by the
ensemble bagged tree classifier. The classification performance of the CNN (ResNet50) classifier was
significantly higher in comparison with the time-series classification: Z=3.4, p <0.0007. Even in
participants in whom the classification accuracy of states using time series was very low (participant
15, 33.4%; or participant 4, 43.4%), the use CNN for time-frequency maps’ images significantly
increased the classification accuracy (up to 77% and 97.2% correspondingly).

Free artistic painting/creation of visual images (“viART”) model. Five or three stages of creating
two oil paintings by a professional artist were classified. These included sketching in the album,
sketching on the canvas, color oil painting on the canvas, viewing the ready painting, and background
EEG with opened eyes for the five-class system and color oil painting on the canvas, viewing the ready
painting, and background EEG with opened eyes for the three-class system.

The time-series classification achieves an accuracy of 75.8% for the three-class system (ensemble
bagged tree) and 56.2% for the five-class system (kernel SVM). In both conditions, the levels of
classification performance were higher than the theoretical chance level (33.3 and 20%, respectively).
The implementation of CNN (ResNet50) for the classification of time-frequency map images increased
the accuracy level up to 99% for both conditions. Thus, different stages of the creative process by a
professional artist appear to be distinguished using ML.

In both continuous tasks (“STORY” and “viART”), the lighter CNN architecture (ResNetl8) was
tested to classify time-frequency images, and the neurointerface usage conditions were modeled. In this
case, the training and testing samples were formed not by bootstrapping from the whole EEG but
consequently: training sample (from the first part of each EEG record) and then testing sample (from
the last part of each EEG record). The classification accuracy in this mode was expectably lower, with
an in average of 70% [11 SD].

Classification of creative thinking stages by ERP (single trial) features. The results of the
implementation of different approaches to the single-trial classification in creative task performance are
presented in Table 2.

Table 2. Classification accuracy for the three-class discrimination (create original proverb ending, recall ending, and find a
synonym to the ending) based on event-related potential features: common spatial pattern for the time series
and images of the time-frequency maps from the wavelet analysis

Tabnuua 2. ToyHOCTb Knaccudumkaumm TpEX KnaccoB (NpvayMaTb OpUrMHaNbHOe OKOH4YaHMe MOCMNOBMLbI, BCMOMHUTb
OKOHYaHMe W Ha3BaTb CUMHOHMM K OKOHYaHWI) Ha CHOBaHWU MPU3HAKOB BbI3BaHHbIX MNOTEHLMAmNoB:
NpPOCTPaHCTBEHHON hunbTpauum BpemeHHbIX psaaoB (CSP) u mn3obpaXeHWW YaCTOTHO-BPEMEHHLIX KapT
BeMBneT-aHanusa

Subject Time-series (3 classes) by CSP (SVM); Wavelet images (3 classes)
number Accuracy %+SD ResNet50; Accuracy %

S1 78.9+7.2 51

S2 81.9£5.6 32

S3 77.4£5.9 54

S4 83.3+4.2 a7

S5 80.0+7.4 36

S6 90.4+2.6 53

S7 80.2+4.8 44

S8 56.2+8.3 40

S9 95.3+£3.5 37

S10 79.3+5.2 36

S11 85.3£2.9 36

S12 86.8+4.6 38

S13 76.5+6.7 43

S14 88.1+6.5 29

S15 73.0£7.5 32

S16 81.5+2.7 40
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S17 98.1+2.5 43
S18 77.3+4.6 55
S19 72+6.2 57
S20 80.9+6.5 59
S21 70.9+6.3 50
S22 78.343.5 38
Mean 80.5+8.8 43.2+8.8

Note: CSP — common spatial pattern; SVM — support vector machine.

TIpumeuanne: CSP — o6wmii mpoctpancTBeHHbli GuibTp ;SVM — MalnHa/MeTo/1 OOPHBIX BEKTOPOB .
The performance of the SVM classifier based on the spatial filtration of time-series data (CSP) was
significantly higher than that of the CNN (ResNet50) classifier for the time-frequency map images:
Z=4.1; p <0.00004 (See Table 2). The minimal decoding accuracy with the CSP feature generation was
56.2% (participant 8), whereas the CNN classifier had an accuracy of 33.3%, which was close to the
theoretical chance level threshold in 9 of the 22 participants.
The applied multiclass spatial components filtering CSP with the following SVM classifier
demonstrated high discriminative accuracy with more mixing of Cr and Syn tasks, as these states are
closer to each other than to the control task (Table 3).

Table 3. Average confusion matrix for the three-class system in the “PROVERBS” task using common spatial pattern for
the time series

Tabnuua 3. YcpegHéHHas maTpuua cMelMBaHUsi Npu Knaccudukaumm Tpéx knaccoB B 3adaHuu «MOCJOBULbI» c
M“cnonb3oBaHWEM NPOCTPaHCTBeHHON dunbTpauumn (CSP) BpeMeHHEIX psaoB

Predicted labels, %

True labels, %

Cr C Syn
Cr 78.0 8.7 133
C 8.4 86.2 55
Syn 15.0 5.3 79.7

Note: Cr. (creative), creating an original proverb’s ending; C. (control), recalling commonly known endings; Syn. (synonym), finding out a synonym to the
proverbs’ endings.

Ipumeyanne: TB. (TBOPUYECKHIi), CO3/1AIONINIT COOCTBEHHBIH BapHaHT OKOHYAaHHs MOcoBHIb!; K. (KOHTPOJIb), BOCIPOM3BEICHHE OOIIEH3BECTHBIX OKOHYAHHIA;
CuH. (CHHOHMM), 10100P CHHOHMMA K H3BECTHOMY OKOHYAHHIO TOCIIOBHII.

The confusion matrices in the classification procedure can give additional information for the
physiological individual and group data analysis that could be used complementarily for the evaluation
of more and less close states based on the discriminated feature vectors.

DISCUSSION

In this comparative classification study, we aimed to develop an approach to classify creative states and
stages using EEG times-series and time-frequency analyses. The study results supported the
requirement of different classification methods for EEGs in long-lasting/continuous creative states and
fast creative tasks.

The wavelet analysis and classification of time-frequency images showed higher effectiveness for
distinguishing long-lasting creative states with the decoding accuracy for four classes of up to
96.4+8.3 [SD] compared with the time-series analysis (best results, 59.6+£15.8 [SD]). Compared with
the time-series analysis, the wavelet (time-frequency) analysis brings EEG power ratio for different
frequency bands. It appears that the frequency characteristics effectively describe some stable states
formed during creative activity at different stages that could be separated by classification.
Physiological data could clarify features that may be sensitive to EEG signal classification. Thus, in
[14], the frequency structure and spectral power differences between free “STORY” creation and
effortful “STORY” creation were revealed. Compared with FCrT, the EffCrT (creative task with
overcoming of self-induced stereotype) demonstrated a higher percentage in 9-10, 10-11, and 11—
12 Hz and increased power in the temporal and occipital areas. Moreover, an increase of alpha activity
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was discussed in accordance with attentional-defocused states and blockage from external information,
which could be important for effective creative activity.

At present, frequency-specific EEG features have been effectively used to distinguish emotional states
based on EEG data [5]. Approaches for classifying creative and emotional states might be similar
because these states can have some “stable”/reproducible patterns; however, they can undergo smooth
rearrangements. Another question under investigation is the assessment of not only the frequency but
also the spatial characteristics of the EEG for classification: in this case, the EEG is a three-
dimensional array with the estimation of time, power, and spatial location of the electrodes on the head
surface [29-31]. For emotion recognition by EEG features, Wang et al. [31] used electrode—frequency
distribution maps calculated based on short-time Fourier transformation as features and CNN with
residual blocks for classification, which achieved 90.59% accuracy for the three-class system (positive,
neutral, and negative emotions). Kim et al. [32] used a 3D spatiotemporal representation of EEG
signals as features and CNN with a channel bottleneck module (CNN-BN) as a classifier and reached
accuracy up to 99% for the two-class classification system of emotional states (valence and arousal). In
the present study, we used time-frequency maps calculated for two electrodes located in the frontal (Fz)
and parietal (Pz) regions, combined into one image. This allowed us to capture both the temporal and
spatial distributions of EEG power features in various creative states/expected stages. Similar to the
recognition of emotional states from the EEG data, the use of CNN for image classification (time-
frequency maps) was effective and provided a mean classification accuracy of up to 96% [8.3 SD] in
our case.

Wavelet map classification of three and five classes (states) from the painting phases of a professional
artist (in “ecological” condition of art studio) reached an accuracy of up to 99.0% in both cases and
was higher than the chance level in the time-series classifications, with 75.8% and 56.2%, respectively.
Classifications of long-lasting creative states in professional participants were previously attempted [9,
33]. In the study by Sasaki et al. [33], states of creative music performance (guitar improvization by
proficient musicians) compared with noncreative task (scales on guitar) were classified with a mean
group accuracy of 75.0% (min, 47.6; max, 92.9%).

Based on high classification accuracy, it was suggested that there could be some common “specific
EEG patterns” for classification despite individual variations for the two tested models — “STORY”
and “viART” — that failed. When the data of one participant was excluded from the common sample
sets (“STORY™), or EEG features from one canvas were suggested to be classified by taking for test
EEG data from the other painting (“viArt”), the accuracy was at the chance level. However, when a
commonly trained set was formed from EEGs of all participants and the test set also included data from
all participants, the classification results were also approximately 90%. Thus, it could be a problem of
highly organized CNN memory abilities that we have to check in the future.

In contrast to the differentiation of long-lasting creativity states, the implementation of time-frequency
maps for single-trial ERP classifications between creative and noncreative cognitive activities was
insufficient.

The mean classification accuracy (with ResNet50 as classifier and time-frequency images as features)
for the three-class system (“PROVERB” model) was 43.2% [8.8 SD], and 9 of the 22 participants had
an accuracy level <40.0% (with 33.3% at the theoretical chance level). The low classification accuracy
might be caused by the small number of samples for CNN training, since 104 trials for each class were
proposed for the participants to fulfill. For state discrimination by the ERP features, time-series
features were mostly applied [4]. In studies with the classification based on ERP features, the brain
responses to different stimuli were mostly classified, for example — target or non-target objects in BCI
spellers, erroneous stimuli, or face perception [34—36]. In this study, we attempted to distinguish short
single-trial time intervals (1500 ms) connected to different mental operations in response to the same
stimuli (same set of proverbs). Only a few attempts were made to distinguish creative and noncreative
states based on EEG features [7—9, 33]. ML using spectrally weighted CSPs (SpecCSP) algorithm for
EEG feature extraction attained a mean of >63.9% classification performance for verbal creative
compared with noncreative task performance (alternative use task) [7]. In our previous study, the
classification of time-series single-trial data for the PROVERBS model gave a mean group accuracy
level of 48.7+5.0% [8], which was higher than the theoretical chance level (33.3% for the three-class
system) but required improved accuracy for practical applications. Here, in addition to converting EEG
from referential montage to CSD, CSP was used for the classification of data from 15 electrodes
located in the central frontal and parietal regions. Group-averaged decoding accuracy for three states
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(creating an original ending, finding/naming a synonym, and recalling the ending of a known proverb
or saying) was 80.5£8.8 (min, 56.2+8.3; max, 98.1£2.5). Since we decoded creative and cognitive
states according to the instructions given to the participants (without taking into account their
response), the type of activity (creative/noncreative) at short intervals for finding an answer (1500 ms)
already led to a reorganization of brain bioelectrical activity detectible using the ML approach.

CONCLUSION

ML approaches appear to be effectively used for the discrimination of creative and noncreative states
and stages of creative activity in both ordinary people and professionals. We implemented wavelet
time-frequency image classifications by convolutional neural network (ResNet50 architecture), which
achieved a mean classification accuracy of 96.4% for the four-class system (“STORY” creation model)
and up to 99% for the three- and five-class system during oil painting by a professional artist (“viART”
model). In both cases, a high discriminative strength of convolutional neural network was
demonstrated for long-lasting states (several minutes). Nevertheless, these are pilot data that should be
further explored to exclude the situation of just convolutional neural network memory for physiological
samples.

This high discriminative strength of convolutional neural network for time-frequency maps could be
used for continuous cognitive neurointerface in the case of overcoming the barrier of training length,
which might be decided through effective pretraining of the convolutional neural network for specific
electroencephalography features. The modeled neurointerface usage situation (consequence order of
training and testing samples) with lighter convolutional neural network architecture expectably
diminished the convolutional neural network classification strength, with an accuracy of approximately
70% [11% SD].

For short-time single-trial creative responses, the CSP-based support vector machine classifier
demonstrated greater accuracy, with a mean accuracy of 83%. Thus, creative states and stages of
creative activity could be recognized using machine learning methods for the development of cognitive
interfaces.

AONOJIHUTENIbHO

Hcrounuk ¢punancupoBanusi. HaydHoe uccienoBaHue mpoBefeHO MpH nojjaepxke Poccuiickoro
Hay4yHoro (onza (rpant Ne 22-28-02073).

KoH(uiukT mHTEpecoB. ABTOPHI ACKIAPUPYIOT OTCYTCTBHE SIBHBIX M NMOTEHLHMAJIbHBIX KOH(IMKTOB
HWHTEPECOB, CBA3AHHBIX C ITyOJIMKAIIMEeH HACTOSIICH CTaThH.

Bkaang asrtopoB. H.B. Illemsixuna — pa3paboTka KOHIEHIIMH, METOIOIOTUM W  TOAXOIOB
HCCIIEI0BaHNUS; IPOBEJCHNE HCCIIEOBAaHUM, Tpe1o0padoTKa, aHaN3 U Kiaccu(UKalMs JaHHBIX, 0030p
JUTEpaTyphl, HAIMCAaHUE TEKCTa M pepakTtupoBaHue ctatby; I'.C. BennkoOopen — peanuszaunusi Koaa
JUI CO3JIaHMs 4acTOTHO-BpeMeHHBIX KapT no O3I/BII, mouck moaxonoB u kiaccuduxanus times-
series a1t kopotkux npo6 (CSP-mpeobpasoBanue); JK.B. HaropnoBa — npoBeneHue ucciieloBaHUH,
aHanm3 U knaccudukanus 31/BII-1aHHBIX, TOUCK U TECTUPOBAHUE MTOAXO0J0B K Kiaccupukanuu D3I
JaHHBIX, HAIUCAHUE TEKCTa U PEIAKTUPOBAHHUE CTATHH.

Bce aBTOpBI MOATBEPAKAAIOT COOTBETCTBHE CBOEr0 aBTOPCTBA MEXIYHapoAHbIM Kputepusm ICMIE
(Bce aBTOpBI BHECIM CYIIECTBEHHBIH BKJIaJA B pa3paOOTKy KOHILENLUH, IPOBEACHUE UCCIEIOBAaHUS U
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