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ABSTRACT 

BACKGROUND: The study presents machine-learning (ML) classification approaches for the 
state/stage differentiation of creative tasks using the “test-control” approach. The control tasks were 
considered as the initial stages of the creative activity. Theime-series and time-frequency 
electroencephalography (EEG) data analyses were employed in three divergent thinking tasks: 1) 
creating endings to well-known proverbs (“PROVERBS”, event-related potential [ERP] paradigm); 2) 
creating stories (“STORIES”, continuous EEG); 3) free creative painting (“viART”, continuous EEG). 
AIM: To compare and select effective ML classification approaches for EEG signal separation at 
different stages or states of creative task activity. 
METHODS: In this study, 22 individuals participated in the “PROVERBS” (ERP paradigm), 15 in the 
“STORIES,” and 1 (a longitudinal case study) in the “viART” task. Linear and convolutional neural 
network (CNN) classifiers were used. EEG data were previous artifacts corrected and converted to 
current source density (CSD). Continuous EEGs were divided into 4-s intervals and 1500 ms after 
stimulus presentation, were used in ERPs. The EEG/ERP time-frequency maps (Morlet wavelet 
transformation) for 3–30 Hz were generated for 4-s intervals with 100 ms shift (continuous EEGs in 
“STORIES” and “viART”) or for 1500 ms after stimulus presentation (ERPs in “PROVERBS”) and 
consisted of combined images (224×224 px) for frontal (Fz) and parietal (Pz) brain zones. Image 
classification was carried out using the modified CNN (ResNet50, ResNet18 architectures).  
RESULTS: The offline classification accuracy of the four-class system (description of a picture, 
inventing a plot, continuation of story’s plot, and background with open eyes) in the “STORY” 
creation task was up to 96.4% [±8.3 SD] with ResNet architectures (ResNet50 and ResNet18). 
The accuracy of the three states discrimination of the artists’ creative painting (resting state with open 
eyes, painting on canvas, and viewing the painting) was 86.94% for kernel naive Bayes and 98.2% for 
CNN. For the trained and tested samples given for the CNN in consecutive order (neurointerface 
mode), the accuracy diminished to 70.0% [11% SD] on average. In the ERP paradigm “PROVERBS”, 
the classification accuracy of the three-class system (creation of “new” ending, naming of semantic 
synonym, and remembering of the known ending) was 80.5% [±8.7 SD] for the common spatial 
pattern, followed by rSVM(radial kernel basis support vector machine), compared with 43.2% 
[±8.8 SD] for CNN. 
CONCLUSION: The use of CNNs allowed better classifying of “continuous” long-term states of 
creative activity. In fast “transient processes” such as ERP, time-series classifiers with spatial filtering 
proved to be more efficient. 
Keywords: neural networks; creativity; artistic creativity; supervised machine learning; 
electroencephalography; EEG; event-related potential; ERP; time-frequency analysis. 
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Подходы и методы машинного обучения для разделения 

нейрофизиологических характеристик творческих состояний/ 

этапов творческой деятельности на основе временны х рядов и 

частотно-временны х признаков ЭЭГ/ВП-сигналов 

Н.В. Шемякина, Г.С. Великоборец, Ж.В. Нагорнова  
Институт эволюционной физиологии и биохимии им. И.М. Сеченова Российской академии 
наук, Санкт-Петербург, Российская Федерация 

АННОТАЦИЯ 

Обоснование. В данной работе предпринята попытка «машинного» офлайн-разделения и 
классификации некоторых состояний/стадий выполнения творческих задач с использованием 
подхода «тест-контроль». Мы рассматривали выполнение контрольных задач в качестве 
начальных стадий реализации творческой деятельности. Проведено сравнительное 
исследование подходов к классификации временнóго сигнала и частотно-временны х карт при 
выполнении трёх заданий на дивергентное мышление: 1) придумывание окончаний к 
общеизвестным пословицам («ПОСЛОВИЦЫ», парадигма вызванных потенциалов, ВП); 2) 
придумывание рассказов («РАССКАЗ», непрерывная ЭЭГ); 3) создание художественного 
изображения в процессе живописи («viART», непрерывная ЭЭГ) на разных этапах.  
Цель исследования — сравнить и выбрать подходы к классификации характеристик ЭЭГ-
сигнала отдельных творческих состояний /стадий творческой деятельности. 
Методы. В задании «ПОСЛОВИЦЫ» (парадигма ВП) участвовало 22 человека, в задании 
«РАССКАЗ» — 15 человек и один человек принимал участие в лонгитюдном исследовании 
художественного творчества (сase study). Мы использовали линейные методы анализа по 
отношению к преобразованному к CSD (current source density) сырому сигналу ЭЭГ и 
свёрточные нейронные сети (convolutional neural network, CNN) для классификации частотно-
временны х карт (вейвлет Морле, 3-30 Гц). Непрерывные ЭЭГ были разделены на эпохи по 4 с, 
для ВП использовали 1500 мс после предъявления стимула. Частотно-временные карты были 
сгенерированы для 4-секундных интервалов ЭЭГ с шагом 100 мс (непрерывные ЭЭГ в заданиях 
«РАССКАЗ», «viART») или 1500 мс (в задании «ПОСЛОВИЦЫ») и состояли из 
комбинированного изображения (224×224 px) для фронтальной (Fz) и теменной (Pz) зон мозга. 
Классификацию изображений проводили с помощью модифицированной CNN (архитектуры 
ResNet50, ResNet18). 
Результаты. Для четырёх классов точность классификации в задаче «РАССКАЗ» 
(придумывание сюжета, продолжение сюжета истории, описание изображения, фон с 
открытыми глазами) составляла 96,4% [±8,3 SD] с ResNet50 и ResNet18. Три состояния «viART» 
(живопись на холсте, просмотр картины, фон с открытыми глазами) дали 86,94% для Kernel 
naive bayes и 98,2% для CNN. Однако в парадигме последовательного разделения на 
обучающую и тренировочную выборки (модель интерфейса) точность классификации упала в 
среднем до 70,0%(11% SD).  
В парадигме ВП «ПОСЛОВИЦЫ» точность классификации трёх классов (создание «нового» 
окончания, подбор семантического синонима и воспроизведение из памяти известного 
окончания пословиц) составляла 80,5% [±8,7 SD] для CSP (common spatial pattern) с 
последующим rSVM(метод опорных векторов на основе радиальной базисной функции), в то 
время как точность CNN составляла 43,2% [±8,8 SD]. 
Заключение. На данный момент использование свёрточных нейронных сетей показало 
относительно лучший результат для классификации «непрерывных», длительных состояний 
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творческой деятельности по изображениям частотно-временных карт. В то же время оценка 
быстрых «переходных процессов», таких как ВП, была более эффективной при классификации 
«временны х рядов» с пространственной фильтрацией.  
Ключевые слова: нейронные сети; художественное творчество; вербальное творчество; 
машинное обучение с учителем; электроэнцефалография; ЭЭГ; вызванные потенциалы, ; 
частотно-временной анализ. 
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INTRODUCTION 

Machine learning (ML) is widely used in the recognition of various “functional” states (emotions, 
phases of sleeping, tiredness, etc.) from physiological data (particularly, electroencephalography 
[EEG]); however, no many studies of cognitive state discrimination have been conducted thus far. 
Moreover, ML is proposed as the basis for brain–computer interface development in different areas of 
rehabilitation — motor [1], cognitive [2], or some enhancement procedures [3]. Studies on state 
recognition have shown great variability in ML methods, choice of classification approaches, and input 
features. The two main approaches to state recognition based on EEG features are as follows: 1) 
recognition of characteristics of “continuous” EEG data when the state either remains constant or 
slowly changes over a long time, i.e., from a few seconds to several minutes (spontaneous EEG); or 2) 
recognition of characteristics of “short” intervals, i.e., lasting up to a couple of seconds when brain 
activity is associated with fast decisions or perceptive and cognitive responses to some external 
stimulus, such as event-related potentials (ERP). In the first case, strict synchronization with external 
events is unnecessary, and features for classification relate to the so-called “spontaneous” EEG, which 
might be represented as frequency band power features [4–6]. For “transient” classifications based on 
ERP features, time series is mostly used [4]. In addition, no common approaches could be used without 
testing it for the type of the task. Thus, this study aimed to explore and compare different ML 
approaches that could be used for the classification of creativity stages in continuous EEGs and short 
ERP trials. In both cases, tasks were tested in divergent thinking without and with time restriction. As 
the model situation, the test-control approach was used, and control tasks were considered possible 
(according to hypothesized mental processes) and previous creative decisions as stages/states.  
Literature data on the implementation of ML in creativity research are limited. In a previous study [7], 
the two-class system (more and less creative states in alternative use task and normal or uncommon 
(more creative) uses of everyday objects) achieved an average accuracy of 63.0%, and the ML 
approach used included spectrally weighted common spatial patterns (CSPs) for feature extraction and 
quadratic discriminant analysis. Discrimination of more and less creative individuals based on EEG 
signals had 82.3% accuracy. Data [8] on the differentiation of three classes — creating an original 
ending, suggesting a synonym, or remembering a well-known ending of a proverb or saying — were 
explored, with an average accuracy of 48±5% for the best linear classifier using a classifier learner. 
The physiological effects described for these data among others revealed higher power (8–9 Hz) in the 
right frontal and left parietal regions for 400–700 ms after stimulus onset while creating original and 
synonymic endings compared with the control task of remembering the ending of a well-known 
proverb. In the nonverbal creativity model [9], i.e., divergent thinking during painting, the accuracy for 
the separation of the background state and creative and noncreative drawing was 66.9% when using a 
classifier based on a support vector machine (SVM; Gaussian radial basis function and classifier 
learner). The physiological effects demonstrated a higher percentage of theta and alpha frequencies in 
the frontal (5–6 and 12–13 Hz), central (4–7 and 8–10 Hz), and parietal (4–5, 6–7, 8–9, and 12–13 Hz) 
zones during creative sketching in comparison with noncreative lines and object drawing. Creativity is 
a heterogeneous process in which certain stages can be defined, for example, idea generation, idea 
elaboration, idea evaluation or generation, and exploratory stages [10]. In a previous study, the specific 
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creative demands were set by instructions [11] and considered models of creative process stages; thus, 
the performance of these tasks could correspond to the distinct states of creative thinking. In our study, 
models of “STORY” creation and “PROVERBS” ending creation can be considered different creative 
states (stages defined by instruction). More clearly, different stages of creative processes can be 
distinguished in free creative activities using artistic painting. In this case, all stages from idea 
generation (sketching) via idea elaboration (canvas painting) and idea evolution (color painting) to 
evaluation (viewing own painting) can be defined and verified by observation. 
To the best of our knowledge, not many researchers have attempted to build classifiers to differentiate 
creative states and stages. However, such classifiers could be used in cognitive rehabilitation [12].  
The use of ML algorithms to differentiate stages of the creative process is within fundamental science 
and allows us to answer the question of whether information about the type of performed mental 
operations is reflected in a complex EEG pattern. On the contrary, these approaches can be used to 
create a “passive” brain–computer interface (see, for example, [13]); when using an external stimulus 
(music and light), the user can be informed about his/her achievement of the “optimal” state for 
creative activity. 
Aim — the study aimed to find the most effective EEG-based classifiers and feature generation’s 
approaches to differentiate stages and states of creative thinking. 

MATERIALS AND METHODS 

STIMULI AND TASKS  

Three models of divergent thinking, namely, verbal (“STORIES”) and nonverbal (“PAINTING 
viART”) without time restriction and verbal (“PROVERBS”) in the ERP paradigm (with time 
restriction), were applied. In “STORIES” and “viART”, continuous EEGs were analyzed, whereas in 
the creative model, “PROVERBS” was examined in relatively short trials.  

DIVERGENT THINKING TASKS WITH CONTINUOUS ELECTROENCEPHALOGRAMS REGISTRATION 

The comparative study using time-series and time-frequency maps (wavelet transformation) 
classifications at different stages of creating endings to well-known proverbs (“PROVERBS”), plot of 
stories (“STORIES”), or visual images (“viART”) was conducted. 

STORY CREATION TASK (“STORY”)  

Electroencephalography  data from the story creation task [14] were used for the four-class system. The 
participants created stories using black-and-white pictures with only two participants from the Guilford 
and O’Sullivan social IQ test [15].  
The three tasks were as follows: the free creation task (FCrT), where the participants were told to 
create the plot before and after the situation based on what they had seen in the picture. The 
participants mentally pronounced sentences and voluntarily pressed the button when they were ready to 
tell the story. In the effortful creation task (EffCrT), the participants were asked to continue the story 
plot, changing the previous line they had just created and using the same picture presentation. FCrT 
and EffCrT could be considered two stages of the same process — creating the original story with 
some impasse and overcoming self-induced short memory stereotype — i.e., in a situation, the 
participants had to expand the story. In the control task, the participants were asked to mentally 
describe the picture.  

ECOLOGICAL (FREE) PAINTING WITH THREE OR FIVE STATES/CLASSES: “VIART” MODEL 

The EEG data used for classification were taken from a longitudinal case study with the participation 
of an artist (J.P.). Classification was conducted for three (final stage of canvas painting, viewing own 
painting, and background state with opened eyes) or five (sketching in the album, oil transfer to canvas, 
final stage of the canvas work, viewing own painting, and a background state) classes, respectively. All 
stages of free creative painting were empirically observed and marked through time by the investigator.  

DIVERGENT THINKING TASK WITH TIME RESTRICTION (EVENT-RELATED POTENTIAL 

PARADIGM) 

Electroencephalography data were collected while the participants were creating original endings for 
known proverbs and sayings (Cr) [16]. The control tasks were to state (recall) the commonly known 
ending of an uncompleted proverb or saying (C) or to give a synonym for proverbs’ ending (Syn). All 
tasks were associated with the retrieval of information from long-term memory. The difference 
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between creative and noncreative tasks was in overcoming the previously formed stereotype and 
searching (creation) for a new original ending of a proverb or saying that would significantly change its 
meaning. 

PARTICIPANTS  

Fifteen participants (aged 18–20 years, 9 female) took part in the divergent verbal creative study 
without time restriction (“STORIES” model), and one participant (professional artist, J.P., aged 57 
years) was involved in the nonverbal creative painting task (“viART”) without time restriction.  
In the model of divergent verbal tasks with time restriction (ERP paradigm), data of 22 participants 
(aged 18–22 years, 18 female) were analyzed and classified.  
All procedures were conducted in accordance with the Declaration of Helsinki (1974) and its 
subsequent updates. The study was approved by the Ethics Committee of Sechenov Institute of 
Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, 
Russia (Protocol number 2-02, February 2, 2022). Participation in the study was voluntary, and 
participants could drop out at any moment. All participants were free of any medical or neurological 
disorders and had normal or corrected vision. Written consent was obtained from all the study 
participants before the study screening in according to the study protocol.  

PSYCHOLOGICAL TESTING 

To ensure that the groups had homogenous cognitive abilities, standard progressive matrices [17] were 
applied. The matrix test is a nonverbal, culturally independent IQ test that measures deductive 
reasoning through five sets of multichoice tasks. Obtained data revealed average IQ values, i.e., 
~110±8. 

EEG/ERP PROCEDURE AND DATA REGISTRATION 

EEG/ERPs were recorded with “Mitsar 31-channel” (Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, 
FCz, FC4, FT8, T3, C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TP8, T5, P3, Pz, P4, T6, O1, Oz, and O2) 
EEG system (“Mitsar Ltd.”, St. Petersburg, http://www.mitsar-medical.com) or with the “SmartBCI 
24-channels”(“Mitsar Ltd.”, St. Petersburg, http://www.mitsar-medical.com) (Fp1, Fp2, F7, F3, Fz, F4, 
F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2) EEG system through the WinEEG software 
package (Ponomarev V.A, Kropotov Ju.D, registered for a computer program RF N 2001610516, 
08.05.2001). Silver chloride electrodes were positioned according to the modification by 10–10% or 
10–20%. Input signals were referenced to the linked ears, filtered between 0.53 and 30 Hz, and were 
digitized at a sampling rate of 500 or 250 Hz correspondingly, with a notch filter of 45–55 Hz. The 
ground electrode was located between the Fpz and Fz sites on the forehead. Resistance of the 
electrodes did not exceed 5 kOhm. 

ELECTROENCEPHALOGRAPHY SIGNAL ARTIFACT CORRECTION 

The eye-blink artifacts were corrected by zeroing the activation curves of individual independent 
components corresponding to eye blinks. These components were obtained by the application of 
independent component analysis (ICA) to the raw EEG fragments. The method has been previously 
described [18–20]. High- and low-frequency activities were automatically marked as artifacts and were 
excluded from further analysis. The thresholds were set as follows: (1) 50 µV for the slow waves in the 
0–2 Hz band and 2) 35 µV for the fast waves in the 20–35 Hz band. 

ELECTROENCEPHALOGRAPHY SIGNAL  FEATURE EXTRACTION 

The search for informative features and a short-term approach for EEG data preprocessing is important 
for state classification, which could be used in practical applications. The difficulty of classification of 
EEG signals is associated with the low spatial resolution of this method. To increase the spatial 
resolution of EEG, the current source density (CSD) transformation was used [21, 22–24], which can 
be employed for both continuous EEG and ERP. The CSD reduces the volume conduction effect on the 
signal recorded from the head surface [22, 23] and makes local differences distinguishable that can 
otherwise be masked by the activities of the neighboring cortical areas [24]. 

CONTINUOUS ELECTROENCEPHALOGRAPHY SIGNAL  FEATURE EXTRACTION (STORIES AND 

“VIART” MODELS) 
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The time-series feature vector generation and wavelet time-frequency analysis were used. In both 
cases, the artifact-free CSD-transformed EEGs were divided into 4-s fragments with a shift of 100 ms 
for further analysis. 
Time-series feature vector generation. The time series of EEG amplitudes from two electrodes (Fz 
and Pz) were combined into one feature vector: 2000 time points for each 4-s EEG fragment. The 
number of 4-s EEG fragments (trials) for classification was equalized between classes in each 
participant individually. 
Wavelet time-frequency analysis. Continuous wavelet transform (CWT) was implemented in Matlab 
[25]. The analytic Morlet wavelet was used to create the CWT (40 voices per octave) in each 4-s 
fragment. L1 normalization was used by the CWT function. The minimum and maximum scales for the 
wavelet energy visualization on time-frequency maps were set equally for all states and participants 
(max = 12 for continuous EEG). The frequency was presented on a logarithmic scale. The amplitude 
was normalized within the specified range for each sample. Combined together, time-frequency maps 
(CWT plotted graphs) from frontal (Fz) and parietal (Pz) electrodes formed one image with 
224×224 px resolution. Samples of such images were used as trained and test sets for the ResNet50 
convolution network for creative state classification. The modified architecture — ResNet18 (with 70 
layers) — was tested for CWT combined images. The number of images for classification was 
comparable between classes in each participant. 

FEATURE EXTRACTION IN THE EVENT-RELATED POTENTIALS PARADIGM 

As previously shown [8], the classification of raw time-series signal in the PROVERBS model had an 
average accuracy of 48±5% for three classes. Thus, we had to explore and compare other approaches to 
choose more robust classification methods for transient processes such as ERPs.  
At this time, for ERP feature extraction, CSP decomposition was applied for the time-series analysis 
and wavelet time-frequency analysis. 
Time-series CSP feature vector generation. The CSP was used for feature generation in the time 
domain for short-time intervals (1500 ms) after stimuli presentation. CSPs maximize the variance for 
one class (least-squares sense) but minimize the variance for the other [26]. As the CSP parameter, the 
number of components was set. The classifier could not accurately distinguish between the two classes 
with too few components. However, if there were too many components, the classifier weights might 
be significantly overfit [27]. CSP was calculated on the space of electrodes located in the central 
regions (F3, Fz, F4, FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, and P4) using MNE-Python 
(https://mne.tools/stable/generated/mne.decoding.CSP.html). The number of components was selected 
empirically and was equal to 15.  
For the multiclass paradigm (three classes in our case), CSPs were calculated by joint approximate 
diagonalization that might be equivalent to an ICA, and a method of choosing independent components 
(ICs) that approximately maximize mutual information of ICs and class labels was presented [28]. 
Wavelet time-frequency analysis. All preprocessing was the same as described above for continuous 
EEG data with a time window difference — here, the 1500-ms time following stimuli presentation was 
used for the CWT time-frequency calculation. The minimum and maximum scales for the wavelet 
energy visualization on the time-frequency maps were set equally for all states and participants (max = 
16 for ERP). 

CLASSIFICATION METHODS 

Electroencephalography signal  time series were classified using algorithms from the classifier learning 
toolbox in Matlab. The results of the method with the best accuracy classification for each participant 
were considered. An empirical assessment of the generalization ability of algorithms was performed 
automatically by K-folds cross-validation: the total number of trials was successively divided into five 
samples (nonoverlapping “bootstrap”), with four of them (80% trials) included in the training sample 
and one (20% trials) in the test sample. The training and test samples of the trials did not overlap. The 
principal component analysis tool in Matlab was used to reduce the dimension of the input feature 
vector. 
The images of time-frequency maps obtained for “STORY”, “viART”, and “PROVERBS” models 
were classified using a convolutional neural network (CNN, with ResNet50 architecture) in Matlab 
Deep Network Designer Toolbox. The numbers of classes (three, four, or five) were set at the last fully 
connected level. The total samples (images) set for each participant was randomly divided into three 
nonoverlapping samples: test (15–25% depending on the size of the total sample), validation (15–30% 
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of the remaining set), and training. Training options for CNN were set as default in Matlab Deep 
Network Designer Tool with MaxEpoch of 30 and MiniBatchSize of 32.  
The CSP-filtered data (“PROVERBS” models) were classified using SVM with the radial basis 
(kernel) function (RBF) and with one-against-each approach of multiclass classification (skLearn and 
Python). In all approaches to the classification, the sample sets for different classes were equal in every 
participant so the empirical chance level was close to the theoretical chance level (20.0; 25.0; and 
33.3% for the five-, four-, and three-class systems, respectively). The classification accuracy far 
exceeding this threshold was considered significant. 
In both continuous tasks (“STORY” and “viART”), the “neurointerface usage conditions” were 
modeled. The training and testing sample sets in these cases were formed not by bootstrapping from 
the whole EEG but consequently: training sample (from the first part of each EEG record) and then the 
testing sample (from the last part of each EEG record). 

STATISTICAL ANALYSIS 

Statistical comparison of different approaches to classification was performed using the Wilcoxon test 
depending on the samples, and significant differences with p <0.05 were considered. The Wilcoxon test 
was selected because we did not expect a normal classification accuracy distribution in the participants’ 
sample. Moreover, in each participant, since the same data were classified, expected dependent 
classification accuracies were obtained by different methods. 

RESULTS 

CLASSIFICATION OF SPONTANEOUS ELECTROENCEPHALOGRAPHY SIGNAL  CHARACTERISTICS 

DURING DIVERGENT CREATIVE THINKING 

Story creation model. A four-class classification was made, i.e., creation of a story plot based on a 
picture (stage 1, FCreT), creation of the story’s plot further changes (stage 2, EffCrT), description of a 
picture, and background EEG with eyes open (Table 1).  

Table 1. Accuracy for the four-class classification based on spontaneous EEG features: time series and images of time-

frequency maps from the wavelet analysis 

Таблица 1. Точность 4-классовой классификации признаков спонтанной ЭЭГ: временны х рядов и изображений 

частотно- временны х карт вейвлет-анализа 

Subject number 
Time-series classification (4 classes) Wavelet images classification (4 classes) 

ResNet50; accuracy, % Accuracy; %±SD Classifier 

S1 53.5±1.7 Ensemble bagged tree 100 

S2 48.8±3.3 Ensemble boosted tree 75 

S3 74.3±1.8 Ensemble bagged tree 99.7 

S4 43.4±0.2 Tree medium tree 97.2 

S5 89.7±1.0 Ensemble bagged tree 100 

S6 63.7±2.7 Ensemble bagged tree 100 

S7 54.6 ±1.5 Gaussian naïve bayes 100 

S8 49.8±0.7 Kernel naïve bayes 98 

S9 87.9±1.5 Ensemble subspace knn 100 

S10 45.1±0.5 Ensemble bagged tree 100 

S11 57.3±3.0 Ensemble bagged tree 100 

S12 59.5±0.5 Ensemble bagged tree 99.3 

S13 64.9±1.9 Ensemble bagged tree 100 

S14 69.5±1.1 Ensemble bagged tree 100 

S15 33.4±0.5 Ensemble subspace Discriminant 
 77.0 

Mean 59.7±15.8  96.4±8.3 

The level of classification performance with the time-series features was higher than that at the 
theoretical chance level (25% for the four-class system) in all participants (See Table 1). The types of 
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classifiers showed that better results varied among participants; however, most often (for 9 among 15 
subjects), a higher accuracy in recognizing the stages of story creation was demonstrated by the 
ensemble bagged tree classifier. The classification performance of the CNN (ResNet50) classifier was 
significantly higher in comparison with the time-series classification: Z=3.4, p <0.0007. Even in 
participants in whom the classification accuracy of states using time series was very low (participant 
15, 33.4%; or participant 4, 43.4%), the use CNN for time-frequency maps’ images significantly 
increased the classification accuracy (up to 77% and 97.2% correspondingly). 
Free artistic painting/creation of visual images (“viART”) model. Five or three stages of creating 
two oil paintings by a professional artist were classified. These included sketching in the album, 
sketching on the canvas, color oil painting on the canvas, viewing the ready painting, and background 
EEG with opened eyes for the five-class system and color oil painting on the canvas, viewing the ready 
painting, and background EEG with opened eyes for the three-class system. 
The time-series classification achieves an accuracy of 75.8% for the three-class system (ensemble 
bagged tree) and 56.2% for the five-class system (kernel SVM). In both conditions, the levels of 
classification performance were higher than the theoretical chance level (33.3 and 20%, respectively). 
The implementation of CNN (ResNet50) for the classification of time-frequency map images increased 
the accuracy level up to 99% for both conditions. Thus, different stages of the creative process by a 
professional artist appear to be distinguished using ML.  
In both continuous tasks (“STORY” and “viART”), the lighter CNN architecture (ResNet18) was 
tested to classify time-frequency images, and the neurointerface usage conditions were modeled. In this 
case, the training and testing samples were formed not by bootstrapping from the whole EEG but 
consequently: training sample (from the first part of each EEG record) and then testing sample (from 
the last part of each EEG record). The classification accuracy in this mode was expectably lower, with 
an in average of 70% [11 SD]. 
Classification of creative thinking stages by ERP (single trial) features. The results of the 
implementation of different approaches to the single-trial classification in creative task performance are 
presented in Table 2. 

Table 2. Classification accuracy for the three-class discrimination (create original proverb ending, recall ending, and find a 

synonym to the ending) based on event-related potential features: common spatial pattern for the time series 

and images of the time-frequency maps from the wavelet analysis 

Таблица 2. Точность классификации трёх классов (придумать оригинальное окончание пословицы, вспомнить 

окончание и назвать синоним к окончанию) на сновании признаков вызванных потенциалов: 

пространственной фильтрации временны х рядов (CSP) и изображений частотно-временны х карт 

вейвлет-анализа 

Subject 
number 

Time-series (3 classes) by CSP (SVM); 
Accuracy %±SD 

Wavelet images (3 classes) 
ResNet50; Accuracy % 

S1 78.9±7.2 51 

S2 81.9±5.6 32 

S3 77.4±5.9 54 

S4 83.3±4.2 47 

S5 80.0±7.4 36 

S6 90.4±2.6 53 

S7 80.2±4.8 44 

S8 56.2±8.3 40 

S9 95.3±3.5 37 

S10 79.3±5.2 36 

S11 85.3±2.9 36 

S12 86.8±4.6 38 

S13 76.5±6.7 43 

S14 88.1±6.5 29 

S15 73.0±7.5 32 

S16 81.5±2.7 40 
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S17 98.1±2.5 43 

S18 77.3±4.6 55 

S19 72±6.2 57 

S20 80.9±6.5 59 

S21 70.9±6.3 50 

S22 78.3±3.5 38 

Mean 80.5±8.8 43.2±8.8 

Note: CSP — common spatial pattern; SVM — support vector machine. 

Примечание: CSP — общий пространственный фильтр ;SVM — машина/метод опорных векторов . 

The performance of the SVM classifier based on the spatial filtration of time-series data (CSP) was 
significantly higher than that of the CNN (ResNet50) classifier for the time-frequency map images: 
Z=4.1; p <0.00004 (See Table 2). The minimal decoding accuracy with the CSP feature generation was 
56.2% (participant 8), whereas the CNN classifier had an accuracy of 33.3%, which was close to the 
theoretical chance level threshold in 9 of the 22 participants. 
The applied multiclass spatial components filtering CSP with the following SVM classifier 
demonstrated high discriminative accuracy with more mixing of Cr and Syn tasks, as these states are 
closer to each other than to the control task (Table 3).  

Table 3. Average confusion matrix for the three-class system in the “PROVERBS” task using common spatial pattern for 

the time series 

Таблица 3. Усреднённая матрица смешивания при классификации трёх классов в задании «ПОСЛОВИЦЫ» с 

использованием пространственной фильтрации (CSP) временны х рядов 

True labels, % 
Predicted labels, % 

Cr C Syn 

Cr 78.0 8.7 13.3 

C 8.4 86.2 5.5 

Syn 15.0 5.3 79.7 

Note: Cr. (creative), creating an original proverb’s ending; C. (control), recalling commonly known endings; Syn. (synonym), finding out a synonym to the 

proverbs’ endings. 

Примечание: Тв. (творческий), создающий собственный вариант окончания пословицы; K. (контроль), воспроизведение  общеизвестных окончаний; 

Син. (синоним), подбор синонима к известному окончанию пословиц. 

 

The confusion matrices in the classification procedure can give additional information for the 
physiological individual and group data analysis that could be used complementarily for the evaluation 
of more and less close states based on the discriminated feature vectors.  

DISCUSSION  

In this comparative classification study, we aimed to develop an approach to classify creative states and 
stages using EEG times-series and time-frequency analyses. The study results supported the 
requirement of different classification methods for EEGs in long-lasting/continuous creative states and 
fast creative tasks.  
The wavelet analysis and classification of time-frequency images showed higher effectiveness for 
distinguishing long-lasting creative states with the decoding accuracy for four classes of up to 
96.4±8.3 [SD] compared with the time-series analysis (best results, 59.6±15.8 [SD]). Compared with 
the time-series analysis, the wavelet (time-frequency) analysis brings EEG power ratio for different 
frequency bands. It appears that the frequency characteristics effectively describe some stable states 
formed during creative activity at different stages that could be separated by classification. 
Physiological data could clarify features that may be sensitive to EEG signal classification. Thus, in 
[14], the frequency structure and spectral power differences between free “STORY” creation and 
effortful “STORY” creation were revealed. Compared with FCrT, the EffCrT (creative task with 
overcoming of self-induced stereotype) demonstrated a higher percentage in 9–10, 10–11, and 11–
12 Hz and increased power in the temporal and occipital areas. Moreover, an increase of alpha activity 
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was discussed in accordance with attentional-defocused states and blockage from external information, 
which could be important for effective creative activity.  
At present, frequency-specific EEG features have been effectively used to distinguish emotional states 
based on EEG data [5]. Approaches for classifying creative and emotional states might be similar 
because these states can have some “stable”/reproducible patterns; however, they can undergo smooth 
rearrangements. Another question under investigation is the assessment of not only the frequency but 
also the spatial characteristics of the EEG for classification: in this case, the EEG is a three-
dimensional array with the estimation of time, power, and spatial location of the electrodes on the head 
surface [29–31]. For emotion recognition by EEG features, Wang et al. [31] used electrode–frequency 
distribution maps calculated based on short-time Fourier transformation as features and CNN with 
residual blocks for classification, which achieved 90.59% accuracy for the three-class system (positive, 
neutral, and negative emotions). Kim et al. [32] used a 3D spatiotemporal representation of EEG 
signals as features and CNN with a channel bottleneck module (CNN-BN) as a classifier and reached 
accuracy up to 99% for the two-class classification system of emotional states (valence and arousal). In 
the present study, we used time-frequency maps calculated for two electrodes located in the frontal (Fz) 
and parietal (Pz) regions, combined into one image. This allowed us to capture both the temporal and 
spatial distributions of EEG power features in various creative states/expected stages. Similar to the 
recognition of emotional states from the EEG data, the use of CNN for image classification (time-
frequency maps) was effective and provided a mean classification accuracy of up to 96% [8.3 SD] in 
our case.  
Wavelet map classification of three and five classes (states) from the painting phases of a professional 
artist (in “ecological” condition of art studio) reached an accuracy of up to 99.0% in both cases and 
was higher than the chance level in the time-series classifications, with 75.8% and 56.2%, respectively. 
Classifications of long-lasting creative states in professional participants were previously attempted [9, 
33]. In the study by Sasaki et al. [33], states of creative music performance (guitar improvization by 
proficient musicians) compared with noncreative task (scales on guitar) were classified with a mean 
group accuracy of 75.0% (min, 47.6; max, 92.9%).  
Based on high classification accuracy, it was suggested that there could be some common “specific 
EEG patterns” for classification despite individual variations for the two tested models — “STORY” 
and “viART” — that failed. When the data of one participant was excluded from the common sample 
sets (“STORY”), or EEG features from one canvas were suggested to be classified by taking for test 
EEG data from the other painting (“viArt”), the accuracy was at the chance level. However, when a 
commonly trained set was formed from EEGs of all participants and the test set also included data from 
all participants, the classification results were also approximately 90%. Thus, it could be a problem of 
highly organized CNN memory abilities that we have to check in the future.  
In contrast to the differentiation of long-lasting creativity states, the implementation of time-frequency 
maps for single-trial ERP classifications between creative and noncreative cognitive activities was 
insufficient.  
The mean classification accuracy (with ResNet50 as classifier and time-frequency images as features) 
for the three-class system (“PROVERB” model) was 43.2% [8.8 SD], and 9 of the 22 participants had 
an accuracy level <40.0% (with 33.3% at the theoretical chance level). The low classification accuracy 
might be caused by the small number of samples for CNN training, since 104 trials for each class were 
proposed for the participants to fulfill. For state discrimination by the ERP features, time-series 
features were mostly applied [4]. In studies with the classification based on ERP features, the brain 
responses to different stimuli were mostly classified, for example — target or non-target objects in BCI 
spellers, erroneous stimuli, or face perception [34–36]. In this study, we attempted to distinguish short 
single-trial time intervals (1500 ms) connected to different mental operations in response to the same 
stimuli (same set of proverbs). Only a few attempts were made to distinguish creative and noncreative 
states based on EEG features [7–9, 33]. ML using spectrally weighted CSPs (SpecCSP) algorithm for 
EEG feature extraction attained a mean of >63.9% classification performance for verbal creative 
compared with noncreative task performance (alternative use task) [7]. In our previous study, the 
classification of time-series single-trial data for the PROVERBS model gave a mean group accuracy 
level of 48.7±5.0% [8], which was higher than the theoretical chance level (33.3% for the three-class 
system) but required improved accuracy for practical applications. Нere, in addition to converting EEG 
from referential montage to CSD, CSP was used for the classification of data from 15 electrodes 
located in the central frontal and parietal regions. Group-averaged decoding accuracy for three states 
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(creating an original ending, finding/naming a synonym, and recalling the ending of a known proverb 
or saying) was 80.5±8.8 (min, 56.2±8.3; max, 98.1±2.5). Since we decoded creative and cognitive 
states according to the instructions given to the participants (without taking into account their 
response), the type of activity (creative/noncreative) at short intervals for finding an answer (1500 ms) 
already led to a reorganization of brain bioelectrical activity detectible using the ML approach.  

CONCLUSION 

ML approaches appear to be effectively used for the discrimination of creative and noncreative states 
and stages of creative activity in both ordinary people and professionals. We implemented wavelet 
time-frequency image classifications by convolutional neural network (ResNet50 architecture), which 
achieved a mean classification accuracy of 96.4% for the four-class system (“STORY” creation model) 
and up to 99% for the three- and five-class system during oil painting by a professional artist (“viART” 
model). In both cases, a high discriminative strength of convolutional neural network was 
demonstrated for long-lasting states (several minutes). Nevertheless, these are pilot data that should be 
further explored to exclude the situation of just convolutional neural network memory for physiological 
samples.  
This high discriminative strength of convolutional neural network for time-frequency maps could be 
used for continuous cognitive neurointerface in the case of overcoming the barrier of training length, 
which might be decided through effective pretraining of the convolutional neural network for specific 
electroencephalography features. The modeled neurointerface usage situation (consequence order of 
training and testing samples) with lighter convolutional neural network architecture expectably 
diminished the convolutional neural network classification strength, with an accuracy of approximately 
70% [11% SD].  
For short-time single-trial creative responses, the CSP-based support vector machine classifier 
demonstrated greater accuracy, with a mean accuracy of 83%. Thus, creative states and stages of 
creative activity could be recognized using machine learning methods for the development of cognitive 
interfaces. 
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