Resident Cardiomyocyte Precursors and Myocardium Regeneration

Cover Page

Cite item

Abstract

The review represents development of different views on the potential of cardial muscle tissue regeneration as well as up-to-date data on existence and functioning of resident precursors of cardiomyocytes.

Full Text

Restricted Access

About the authors

K. A. Rubina

Moscow State University, Faculty of Medicine; Russian Cardiology Research and Production Center; Institute of Experimental Cardiology; «Gene and Cellular Therapy» Ltd

Email: zv20@yandex.ru
Russian Federation, Moscow; Moscow; Moscow; Moscow

V. S. Melikhova

Moscow State University, Faculty of Medicine; Russian Cardiology Research and Production Center; Institute of Experimental Cardiology; «Gene and Cellular Therapy» Ltd

Author for correspondence.
Email: redaktor@celltranspl.ru
Russian Federation, Moscow; Moscow; Moscow; Moscow

E. V. Parfenova

Moscow State University, Faculty of Medicine; Russian Cardiology Research and Production Center; Institute of Experimental Cardiology; «Gene and Cellular Therapy» Ltd

Email: redaktor@celltranspl.ru
Russian Federation, Moscow; Moscow; Moscow; Moscow

References

  1. Cleland J.F.G., McGowan J. Heart Failure due to Ischaemic Heart Disease: Epidemiology, Pathophysiology and Progression. J Cardiovasc Pharmacol 1999; 33(suppl. 3):S17-S29.
  2. Kim W.H., Joo C.U., Ku J.H. et al. Cell cycle regulators during human atrial development. Korean J Intern Med 1998; 13(2):77-82.
  3. Orlic D., Kajstura J., Chimenti S., et al. Mobilized bone marrow repair the infracted heart, improving function and survival. PNAS 2001; 98: 10344-10349.
  4. Friedenstein A.J., Gorskaja J.F., Kulagina N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4: 267274.
  5. Koh G.Y., Soonpaa M.H., Klug M.G., et al. Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. J Clin Invest 1995; 96(4):2034-42.
  6. Leor J., Patterson M., Qumones M.J. et al. Transplantation of Fetal Myocardial Tissue Into the Infarcted Myocardium of Rat A Potential Method for Repair of Infarcted Myocardium? Circulation 1996; 94: 332-336.
  7. Li R.K., Mickle D.A.G., Weisel R.D. et al. Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 1997; 96:179-187.
  8. Fernandes K. J. L., McKenzie I. A., Mill P., Smith K. M., Akhavan M., Barnabé-Heider F. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 2004; 6: 1082 Œ 1093.
  9. Quaini F., Urbanek K., Beltrami A.P., Finato N., Beltrami C.A., Nadal-Ginard B., Kajstura J., Leri A., Anversa P. Chimerism of the transplanted heart. N. Engl. J. Med. 2002; 346: 5-15.
  10. Muller A., Pfeiffer P., Koglin J., Schflfers H-J., Seeland U., et al. Cardiomyocytes of non-cardiac origin in myocardial biopsies of human transplanted hearts. Circulation 2002; 106 : 31-35.
  11. Strauer B.E., Brehm M., Zeus T., Kqstering M., Hernandez A., et al. Repair of infracted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002; 106: 1913-1918.
  12. Wollert K.C., Lotz M. J., Lichtenberg S. R., Lippolt P., Breidenbach C., Fichtner S., Korte T., Hornig B., Messinger D. Intracoronary autologous bonemarrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364: 141-148.
  13. Katritsis D.G., Sotiropoulou P.A., Karvouni E. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infracted human myocardium. Catheter Cardiovasc Interv 2005; 65: 321329.
  14. Archundia A., Aceves J.L.,Lopez-Hernandez M., et al. Direct cardiac injection of G-CSF mobilized bone-marrow stem-cells improves ventricular function in old myocardial infarction. Life Sci 2005; 78: 279-283.
  15. Stamm C., Westphal B., Kleine H.D., Petzsch M., Kittner C., et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003; 361: 45-46.
  16. Bartunek J., Vanderheyden M., Vandekerckhove B., et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circ 2005; 112: I178-I183.
  17. Watanabe C. Intracoronary adipose tissue derived stem cell therapy preserves left ventricular function in a porcine infarct model. Paper presented at Transvascular Cardiovascular Therapeutics Annual Meeting, September 2004, Washington DC, USA.
  18. Schächinger V., Tonn T., Dimmeler S., et al. Bone-marrow-derived progenitor cell therapy in need of proof of concept: design of the REPAIR-AMI trial. Nat Clin Prac Cardiovasc Med 2006; 3 (1): 23-28.
  19. Menasche P., Hagege A. A., Vilquin J.T., Desnos M., et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003; 41:1078-83.
  20. Erbs S. Linke A., Adams V.,et al.. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo controlled study. Circ Res 2005; 97: 756-762.
  21. Tirziu D., Simons M. Angiogenesis in the human heart: gene and cell therapy. Angiogenesis. 2005;8(3): 241-51.
  22. Ripa R.S., Jorgensen E., Wang Y., et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the doubleblind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation2006; 113: 1983-1992.
  23. Askari A.T., Unzek S., Popovic Z.B., et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2004; 362 : 697-703.
  24. Okada H., Takenura G., Kosai K., et al. Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circ 2005; 111:24302437.
  25. Losordo D.W. Vale P.R., Hendel R.C., Milliken C.E., Fortuin F.D. Phase x placebo-controlled, double -blind, Dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer be catheter delivery in patients with chronic myocardial ischemia. Circ 2002; 105:2012-2018.
  26. Shintani S., Kusano K., Ii M., Iwakura A., Heyd L. et al. Synergistic effect of combined intramyocardial CD34+ cells and VEGF2 gene therapy after MI. Nat ClinPract Cardiovasc Med 2005; 2:123-128.
  27. Pislaru S.V., Simari R.D. Gene transfer for ischemic cardiovascular disease: is this the end of the beginning or the beginning of the end? Nat ClinPract Cardiovasc Med 2005; 2: 138-144.
  28. Vassalli G., Bueler H., Dudler J., von Segesser L.K., Kappenberger L. Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol 2003; 90: 229-238.
  29. Brockes J.P., Kumar A., Velloso C.P. Regeneration as an evolutionary variable. J Anat 2001; 199: 3-11.
  30. Poss K.D., Wilson L.G., Keating M.T. Heart regeneration in zebrafish. Science 2002; 298: 2188-2190.
  31. Leferovich J.M. Bedelbaeva K., Samulewicz S., Zhang X.M., Zwas D. Heart regeneration in MRL mice. PNAS 2001; 98:9830-9835.
  32. Румянцев П.П. Кардиомиоциты в процессах репродукции, дифференцировки и регенерации. Наука; 1982.
  33. Urbanek K., Quaini F., Bolli R., Leri A., Kajstura J., Anversa P. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. PNAS 2005; 102(24):8692-7.
  34. Varma J., Prabhu S., Anversa P.A., Bolli R. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci U S A 2005; 102(10):3766-71.
  35. Beltrami A.P., Urbanek K., Kajstura J., et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001; 344: 1750-1757.
  36. Beltrami A.P. Urbanek K., Kajstura J., Yan S.M., Finato N., et al. Cardiac c-kit positive cells proliferate in vitro and generate new myocardium in vivo. Circulation 2001; 104: 324.
  37. Oh H., Wang S. C., Prahash A., Sano M., Moravec C. S., at al. Telomere attrition and Chk2 activation in human heart failure. PNAS 2003;100:5378-5383.
  38. Gilbert S. F. Developmental Biology. 6th ed, 2000.
  39. Tzahor E., Lassar A. B. Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev 2001; 15:255-260.
  40. Schultheiss T.M., Xydas S., Lassar A.B. Induction of avian cardiac myogenesis by anterior endoderm. Development 1995; 121(12):4203-14.
  41. Andree B., Duprez D., Vorbusch B., Arnold H.H., Brand T. BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mech Dev 1998;70(1-2):119-31.
  42. Moon R. T., Brown J. D., Torres M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 1998; 13:157-162.
  43. Markwald R. R., Trusk T., Moreno-Rodriguez R. Formation and septation of the tubular heart: Integrating the dynamics of morphology with emerging molecular concepts. In M. de la Cruz and R. R. Markwald (ed.), Living Morphogenesis of the Heart. Birkhauser Press, Boston; 1998.
  44. Smadja D.M., Bieche I., Uzan G., Bompais H., Muller L., et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol. 2005;25(11):2321-7.
  45. Gallo P., Peschle C., Condorelli G. Sources of cardiomyocytes for stem cell therapy: an update. Pediatr Res 2006; 59(4):79R-83R.
  46. Beltrami A.P., Barlucchi L., Torella D., et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114: 763-776.
  47. Messina E., Angelis L.D., Frati G., et al. Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart. Circ Res 2004; 95: 911-921.
  48. Laugwitz K-L., Moretti A., Lam J., et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages, Nature 2005; 433 :647-653.
  49. Wilson S. F., Colucci M.D., Liao R., Pfister O., Mouquet F., et al. CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res. 2005; 97:52-61.
  50. Cesselli D., Beltrami A.P., Urbanek K., Kajstura J., et al Cardiac stem cells are nested in niches of the adult mouse heart and possess the ability to divide and differentiate in the various cardiac lineages. Circulation 2002; 106: II-14.
  51. Urbanek K., Cesselli D., Rota M., Nascimbene A., Angelis A., HosodaT., Bearzi C., Boni A, Bolli R., Kajstura J., Anversa P., Leri A. Stem cell niches in the adult mouse heart. PNAS 2006; 103 (24): 9226-9231.
  52. Yoon Y.S., Wecker A., Heyd L., et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 2005; 115:326 -38.
  53. Behfar A., Zindman L.V., Hodgson D.M., et al. Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 2002; 16: 1558-66.

Supplementary files

Supplementary Files
Action
1. Fig. 1

Download (103KB)
2. Fig. 2

Download (77KB)
3. Fig. 3

Download (120KB)

Copyright (c) 2007 PJSC Human Stem Cells Institute



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 57156 от 11.03.2014.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies