IL-10 cytokine family secretion is associated with the activity of mitophagy components in visceral adipose tissue in obese with and without type 2 diabetes mellitus

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Autophagy is required to maintain cellular homeostasis and organ function by selectively ridding cells of potentially toxic proteins, lipids, and organelles. Impaired homeostasis of autophagic processes is associated with metabolic disorders such as obesity and type 2 diabetes mellitus. In obesity, a violation of autophagy in adipose tissue and its inflammation contributes to the formation of type 2 diabetes mellitus.

The aim of the study was to analyze the expression of autophagy genes in the adipose tissue of the greater omentum and to search for their relationship with the levels of cytokines of the IL-10 family in blood plasma in obese patients, depending on the presence or absence of type 2 diabetes mellitus.

Blood plasma and visceral adipose tissue samples were studied from 347 obese patients with and without type 2 diabetes. A biochemical analysis of the patients' blood was carried out. The level of cytokines was detected by flow fluorometry. Gene expression was determined by real-time PCR, and tissue-specific protein production was determined by immunoblotting. Statistical processing of the results was carried out using GraphPad Prism 9.0.0 software.

Plasma levels of IL-10, IL-20, IL-22, IL-28A, and IL-29 are increased in obese patients without type 2 diabetes compared with patients with type 2 diabetes. In patients with type 2 diabetes mellitus, the expression of the SQSTM1_p62 and MAP1LC3B genes in the greater omentum increased compared to patients without it.

High plasma levels of IL-22 and IL-26 are associated with the presence of type 2 diabetes mellitus. In patients without type 2 diabetes mellitus, an increase in the level of IL-28A in blood plasma is associated with a decrease in the expression of autophagy genes SQSTM1_p62 and MAP1LC3B in the adipose tissue of the greater omentum.

Full Text

Restricted Access

About the authors

D. A. Shunkina

I. Kant Baltic Federal University

Author for correspondence.
Email: DariaSK@list.ru
Russian Federation, Kaliningrad

A. Ya. Dakhnevich

I. Kant Baltic Federal University

Email: DariaSK@list.ru
Russian Federation, Kaliningrad

A. A. Komar

I. Kant Baltic Federal University

Email: DariaSK@list.ru
Russian Federation, Kaliningrad

M. A. Vulf

I. Kant Baltic Federal University

Email: DariaSK@list.ru
Russian Federation, Kaliningrad

E. O. Shunkin

I. Kant Baltic Federal University

Email: DariaSK@list.ru
Russian Federation, Kaliningrad

N. D. Gazatova

I. Kant Baltic Federal University

Email: DariaSK@list.ru
Russian Federation, Kaliningrad

E. V. Kirienkova

I. Kant Baltic Federal University

Email: DariaSK@list.ru
Russian Federation, Kaliningrad

N. M. Todosenko

I. Kant Baltic Federal University

Email: DariaSK@list.ru
Russian Federation, Kaliningrad

Zh. L. Malakhova

I. Kant Baltic Federal University

Email: DariaSK@list.ru
Russian Federation, Kaliningrad

L. S. Litvinova

I. Kant Baltic Federal University

Email: DariaSK@list.ru
Russian Federation, Kaliningrad

References

  1. CDC. Causes and Consequences of Childhood Obesity [Internet]. Centers for Disease Control and Prevention. 2022 [cited 2022 Apr 17], https://www.cdc.gov/obesity/basics/causes.html.
  2. Zhang Y., Sowers J.R., Ren J. Targeting autophagy in obesity: from pathophysiology to management. Nat. Rev. Endocrinol. 2018; 14(6): 356–76.
  3. Tong L., Wang L., Yao S. et al. PPARδ attenuates hepatic steatosis through autophagy-mediated fatty acid oxidation. Cell Death Dis. 2019; 10(3): 1–14.
  4. Goldman S., Zhang Y., Jin S. Autophagy and adipogenesis Implications in obesity and type II diabetes. Autophagy 2010; 6(1): 179–81.
  5. Menikdiwela K.R., Ramalingam L., Rasha F. et al. Autophagy in metabolic syndrome: breaking the wheel by targeting the renin-angiotensin system. Cell Death Dis. 2020; 11(2): 1–17.
  6. Ferhat M., Funai K., Boudina S. Autophagy in Adipose Tissue Physiology and Pathophysiology. Antioxid. Redox Signal. 2019; 31(6): 487–501.
  7. Frisardi V., Matrone C., Street M.E. Metabolic Syndrome and Autophagy: Focus on HMGB1 Protein. Frontiers in Cell and Developmental Biology 2021 [cited 2022 May 19]; 9, https://www.frontiersin.org/article/10.3389/fcell.2021.654913.
  8. XuQ., Mariman E.C.M., Roumans N.J.T. et al. Adipose tissue autophagy related gene expression is associated with glucometabolic status in human obesity. Adipocyte 2018; 7(1): 12–9.
  9. Ndisang J.F., Vannacci A., Rastogi S. Insulin Resistance, Type 1 and Type 2 Diabetes, and Related Complications 2017. J. Diabetes Res. 2017; 2017: 1478294.
  10. Shunkina (Skuratovskaia) D., Komar A., Vulf M. et al. Tumor Necrosis Receptor Superfamily Interact with Fusion and Fission of Mitochondria of Adipose Tissue in Obese Patients without Type 2 Diabetes. Biomedicines 2021; 9(9): 1260.
  11. Donnelly R.P., Kotenko S.V. Interferon-lambda: a new addition to an old family. J. Interferon Cytokine Res. 2010; 30(8): 555–64.
  12. Commins S., Steinke J.W., Borish L. The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J. Allergy Clin. Immunol. 2008; 121(5): 1108–11.
  13. Maiorino M.I., Schisano B., Di Palo C. et al. Interleukin-20 circulating levels in obese women: effect of weight loss. Nutr. Metab. Cardiovasc. Dis. 2010; 20(3): 180–5.
  14. IL-20 is involved in obesity by modulation of adipogenesis and macrophage dysregulation: PubMed [cited 2022 Apr 9], https://pubmed.ncbi.nlm.nih.gov/34403503//.
  15. Hsu Y.H., Wu C.H., Chiu C.J. et al. IL-20 is involved in obesity by modulation of adipogenesis and macrophage dysregulation. Immunology 2021; 164(4): 817–33.
  16. Sabat R., Wolk K. Deciphering the role of interleukin-22 in metabolic alterations. Cell Biosci. 2015; 5: 68.
  17. Sivitz W.I., Yorek M.A. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid. Redox Signal. 2010; 12(4): 537–77.
  18. Frontiers | IL-26, a Cytokine With Roles in Extracellular DNA-Induced Inflammation and Microbial Defense | Immunology [cited 2022 Apr 17], https://www.frontiersin.org/articles/10.3389/fimmu.2019.00204/full.
  19. Savchenko L., Mykytiuk M., Cinato M. et al. IL-26 in the induced sputum is associated with the level of systemic inflammation, lung functions and body weight in COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2018; 13: 2569–75.
  20. Ma Y., Li J., Peng Z. et al. IL28A protein homotetramer structure is required for autolysosomal degradation of HCV-NS5A in vitro. Cell Death Dis. 2020; 11(3): 1–14.
  21. Lin T.Y., Chiu C.J., Kuan C.H. et al. IL-29 promoted obesity-induced inflammation and insulin resistance. Cell. Mol. Immunol. 2020; 17(4): 369–79.
  22. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy: PubMed [cited 2022 Apr 17], Available from: https://pubmed.ncbi.nlm.nih.gov/21205641/.
  23. Dai W., Jiang L. Dysregulated Mitochondrial Dynamics and Metabolism in Obesity, Diabetes, and Cancer. Front. Endocrinol. (Lausanne) 2019; 10: 570.
  24. p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria: PubMed [cited 2022 Apr 17], https://pubmed.ncbi.nlm.nih.gov/20604804/.
  25. Pickles S., Vigié P., Youle R.J. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Current Biology 2018; 28(4): R170–85.
  26. Lechado Terradas A., Zittlau K.I., Macek B. et al. Regulation of mitochondrial cargo-selective autophagy by posttranslational modifications. Journal of Biological Chemistry 2021; 297(5): 101339.
  27. Jheng H.F., Tsai P.J., Guo S.M. et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol. Cell. Biol. 2012; 32(2): 309–19.
  28. Akazawa Y., Nakao K. To die or not to die: death signaling in nonalcoholic fatty liver disease. J. Gastroenterol. 2018; 53(8): 893–906.
  29. Jung J.Y., Suh C.H. Incomplete clearance of apoptotic cells in systemic lupus erythematosus: pathogenic role and potential biomarker. Int. J. Rheum. Dis. 2015; 18(3):294–303.
  30. Mellor K.M., Bell J.R., Young M.J. et al. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J. Mol. Cell. Cardiol. 2011; 50(6): 1035–43.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (89KB)
3. Fig. 2

Download (101KB)
4. Fig. 3

Download (111KB)
5. Fig. 4

Download (22KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies